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Abstract  

Recently, massive wireless terminals are deployed to harvest environment information such as temperature, humidity. For 

massive connectivity, low power wide area (LPWA) systems, including LoRaWAN, have been developed. However, these 

protocols can adopt simple functions due to the limited capability of wireless terminals. For example, distributed asynchronous 

medium access control (MAC) protocol (e.g., pure ALOHA, CSMA/CA) is implemented. Packet collision happens due to mutual 

interference among wireless terminals. There have been extensive research works on resource allocation to avoid or mitigate 

mutual interference. However, the conventional works only consider spreading factor (SF) allocation, which is a modulation 

parameter of the physical layer, and a random-hopping is applied so that each node changes frequency channel at the start of 

packet transmission. In this research, we propose frequency channel allocation using reinforcement learning. In the proposed 

system, a fusion center (FC) calculates Q-rewards for each wireless terminal based on the number of successfully received 

packets, which the FC can observe. Moreover, FC allocates different frequency channels to wireless terminals that may collide. 

The computer simulation results under the LoRaWAN environment elucidate the effectiveness of the proposed method. 
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Numerical Simulation
• Channel Model: Pathloss + spatially correlated shadowing [4]
• Two packet traffics model is assumed [5]: Regular + Event detection
• Regular traffic: 2 application types
• Packets occur with intervals {0.5,5}[min/packet]

• Event traffic: Event occurs every 5 minutes
• Compared method
• Conventional: Each node hops frequency

at start of transmission
• Upper bound: In case of no mutual interference i.e. K→ ∞

Conclusion
• Reinforcement learning based resource allocation
✓ Q-reward calculation without additional overhead
✓ Proposed method can improve average PDR 13%
✓ lower PDR point is also improved
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Proposed Method: Resource allocation using DQN[3]
• Learning Model
• State #: Resource indices of each terminal
• Act $: allocated resource index to terminal n at epoch t+1
• Reward Qn,kn,t+1: Weighted sum of the number of received 

packets
• Orthogonal resource allocation in Fusion Center (FC)

1. Observe resource indices of each terminal
2. Estimate Q-reward of each resource index of terminal n
3. Allocate resources to each terminal based on e-greedy
4. Observe the number of received packets during one epoch
5. Calculate Q-reward for each terminals from 

the number of received packets
6. Execute Back-Propagation of FC’s Neural Network (NN)
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Background
• Dense distribution of wireless terminals in IoT network
• LoRaWAN [1] is one of communication protocols that can accommodate large 

number of terminals
✓ In LoRaWAN, packet collision and PDR degradation frequently happens

• Related research
• Spreading Factor allocation [2]: Optimal modulation parameter allocation can 

improve packet delivery performance under massive connectivity
• There is no research of frequency channel allocation in LoRaWAN environment
→ Effective utilization of frequency resources is necessary to further massive 
connectivity for LoRaWAN
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ü 13% average PDR improvement
ü PDR’s 10% point is 40% improved

(a) Learning process (K=4) (b) PDR performance

Communication area 3000×3000[m2] Carrier frequency 923 [MHz]
No. of terminals N 3000 Shadowing deviation 3.48 [dB]

Transmit power 13 [dBm] CS threshold -80.0 [dBm]
Noise power density -174 [dBm/Hz] No. of resources K {4,8}

Bandwidth 125 [kHz]

Fig. 1. LoRaWAN system model

Fig. 4. Performance

Fig. 2. Proposed Model

Table 1. Wireless parameters
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Epoch Length 600 [sec] Number of NN layers 4
Number of Epochs 1000 Number of neuron of hidden layer (10,5)

Q-learning rate 0.4 NN learning rate 10-3

Table 2. Learning parameters
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