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ABSTRACT The mutual interference among wireless nodes is a critical factor in the Internet-of-Things
(IoT) era due to its dense deployment. Due to its large coverage area, wireless nodes may not be able to
detect the on-going communication of other nodes in a long range wide area network (LoRaWAN), which
is one of the low power wide area (LPWA) standards. This results in packet collision. The packet collision
among LoRaWAN nodes significantly deteriorates network performance functions such as packet delivery
rate (PDR). Furthermore, if packet collision happens, LoRaWAN nodes must retransmit packets, draining
their limited battery power. Thus, mutual interference management among LoRaWAN nodes is important
from the perspectives of both network performance and network lifetime. However, due to its large network
size, it is difficult to explicitly comprehend the wireless channel environment around each LoRaWAN node,
such as the relation among other LoRaWAN nodes. Thus, in this paper, we utilize the powerful machine
learning technique. The wireless environment around LoRaWAN nodes are learned, and the knowledge is
utilized for resource allocation in order to improve PDR performance. In the proposed method, Q-learning
is adopted in a LoRaWAN system, and the weighted sum of the number of successfully received packets
is treated as a Q-reward. The gateway (GW) allocates resources to maximize this Q-reward. The numerical
results considering LoRaWAN elucidate that the proposed scheme can improve average PDR performance
by about 20% compared to the random resource allocation scheme.

INDEX TERMS Frequency sharing, machine learning, resource allocation, LoRaWAN, CSMA/CA.

I. INTRODUCTION
To meet the demand for high speed communication, wireless
access technologies have been evolving. Similarly, low power
consumption communication is becoming more important
despite the reduction of communication speed due to the
emergence of the Internet-of-Things (IoT) [1]. Long range
wide area network (LoRaWAN) is one of the promising
network structures for low power wide area (LPWA) net-
works, which provide low speed, long range communication
for distances of up to 10 km. Chirp-spread spectrum (CSS)
technique is adopted for the physical layer of LoRaWAN.
For the medium access control (MAC) layer, each LoRaWAN
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node adopts pure ALOHA. Due to this simple MAC pro-
tocol, increased packet collision due to the large number
of LoRaWAN nodes is a critical factor in the limitation of
the network performance. One of the countermeasures is
the introduction of a duty cycle, which limits the transmis-
sion interval of each node to a predetermined threshold [2].
Recently, the application of carrier sense multiple access with
collision avoidance (CSMA/CA) was proposed to improve
the performance of LoRaWAN [3]. For example, CSMA/CA
is essential for LoRaWAN in Japan [4]. In this protocol,
LoRaWAN nodes detect the wireless medium before starting
packet transmission. However, due to LoRaWAN’s wide
communication area and the low transmission power of its
nodes, packet collision happens quite often in comparison
to legacy wireless LAN systems. Because the LoRaWAN
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node has limited functionality due to its low cost, the
introduction of more complicated interference management
technologies into LoRaWAN nodes is not appropriate. One
potential solution is to allocate orthogonal frequency chan-
nels to LoRaWAN nodes that often collide with each other.
In LoRaWAN, there are up to 16 orthogonal frequency chan-
nels [5], and each LoRaWAN node randomly chooses one of
the multiple available channels from information provided by
its gateway (GW). However, it is difficult to decide which
channel should be assigned to each LoRaWAN node due to
the large scale of the network and the limited functionality
of LoRaWAN nodes. Moreover, LoRaWAN nodes cannot
inform theGWof the surroundingwireless environment, such
as how often each LoRaWAN node can carrier sense (CS)
the on-going communication due to its limited functionality.
Thus, a resource allocation scheme that does not require such
feedback from nodes is demanded. Conventional methods
such as spreading factor (SF) allocation schemes are proposed
for LoRaWAN in [7]–[9]. In [7], SF and coding rate are jointly
assigned to ensure a high transmit success rate. Moreover,
scalability [8] and coding rate fairness [9] are also consid-
ered. However, these works consider only ALOHA multi-
ple access; no existing work considers orthogonal frequency
channel allocation in LoRaWAN with CSMA/CA.

In this paper, we propose the utilization of a powerful
machine learning technique for efficient orthogonal chan-
nel assignment in LoRaWAN with CSMA/CA. Because it
is difficult to obtain the training set in a practical system,
we focus on reinforcement learning, which does not require
a training set but can learn the environment by observing the
output from the environment after its action. To the best of
our knowledge, this is the first work that tackles orthogonal
resource allocation in LoRaWAN where additional informa-
tion exchange is not allowed. The number of successfully
received packets at a GW is used as the reward of learning so
that no explicit feedback from a LoRaWAN node is needed
for resource allocation. Because there is a strong correlation
between the number of received packets and packet deliv-
ery rate (PDR), this resource allocation can improve PDR
performance. The proposed scheme is shown to improve the
average PDR performance by 20% compared to the random
allocation scheme through a computer simulation with con-
sideration for LoRaWAN specification.

The rest of this paper is organized as follows. In Sect. II,
we introduce LoRaWAN and its system. In Sect. III, we sum-
marize the systemmodel considered in this paper. In Sect. IV,
we briefly review the existing learning method. In Sect. V,
we propose Q-learning based wireless resource allocation.
In Sect. VI, computer simulation results are provided.
Sect. VII concludes the paper.

II. LORAWAN
A. LORAWAN FUNCTIONS
1) PHYSICS LAYER
LoRaWAN is one of the LPWA standards, and adopts CSS
modulation and frequency shift keying (FSK) as a physical

layer technology. Its data rate and communication range
are determined by SF. SF indicates the receive threshold.
In a higher SF, the receiver can receive packets with lower
received signal power, but the data rate from the transmitter
is also reduced. Let the frequency bandwidth be W [Hz].
Then, the chip length Tc [sec] of the CSS symbol is given by
Tc = 1/W [sec]. The CSS symbol length Ts [sec] is given by

Ts = Tc × 2SF . (1)

As SF increases, the transmitted signal has stronger resis-
tance against noise and interference at the expense of the
data rate. The typical data rate and signal-to-noise power
ratio (SNR) limit is shown in Table 1.

TABLE 1. Data rate and SNR limit [10].

The CSS modulated signal is transmitted over one of the
orthogonal frequency channels. For LoRaWAN, there are up
to K orthogonal frequency channels which depend on region
and frequency [14]. Each GW informs the LoRaWAN nodes
of the available channel indices [5].

2) MAC LAYER AND MULTIPLE ACCESS SCHEME
A simple ALOHA protocol is adopted as a MAC layer in
LoRaWAN as its simple operation is suitable for low cost
LoRaWAN nodes. Three classes are defined for LoRaWAN
nodes, i.e., class A, B, and C [5]. Class A is mandatory for
all LoRaWAN nodes. Class A nodes receive the downlink
transmission together with an ACK message via two receive
windows which are open after the uplink transmission of
a node. Class B nodes periodically open a beacon receive
window. Class C nodes always open a receive window. Thus,
a GW can inform each node of necessary commands such as
available frequency channels via downlink transmission.

III. SYSTEM MODEL
A. SYSTEM MODEL
Fig. 1 shows the LoRaWAN system considered in this paper.
N LoRaWAN nodes are randomly and uniformly distributed
within a network area of D×D [km2]. One GW that controls
LoRaWAN nodes and receives information from them is
located at the center of the area. In total, K orthogonal fre-
quency channels are available in this system. Let us denote the
set of LoRaWAN nodes and that of the orthogonal frequency
channels as N and K, respectively.

Each LoRaWAN node generates packets of two different
traffics [6]. The first traffic is regularly generated following
predetermined packet generation interval Tinterval,n, which is
selected from the set Tinterval. In this study, the LoRaWAN
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FIGURE 1. System model.

nodes that have the same packet generation intervals are
called cluster. A random offset Toffset,n ∼ U[0,Tinterval,n]
is assigned to LoRaWAN node n. The packet generation
interval indicates the application type in the communication
area such as gas meter and water supply meter. Note that
even the LoRaWAN nodes with the same packet generation
interval may not transmit the packets simultaneously owing to
the different offsets. We assume that there are U application
types. Thus, on an average, (N/U ) LoRaWANnodes generate
packets with the same interval and attempt to send the packet
to the GW. The second traffic is generated once an event
is detected. In this study, an event (e.g., fire and electricity
accident) occurs at time Tevent in each epoch at a random
position, and it propagates in the communication area with
predetermined speed [6]. The exponential propagation model
is considered in this study.

Each LoRaWAN node transmits packets in accordance
with its duty cycle. After finishing a transmission of packet i,
LoRaWAN node nwaits for the transmission of packet (i+1)
transmission until Twait,n,i, which is given by

Twait,n,i =
1− G
G
×
(
d(Ntrans,n,i/Rb)e × Ts

)
, (2)

where Ntrans,n,i is the transmitted packet size of packet i from
node n, Rb is the data rate, and G is the duty cycle.
If multiple LoRaWAN nodes transmit packets to the GW

using the same frequency channel simultaneously, the GW
receives multiple packets. If both the SNR and the signal-
to-interference power ratio (SIR) are above the thresholds
0SNR and 0SIR, respectively, the packet is considered to
be successfully received. If the transmitted packet is lost,
the LoRaWAN node retransmits packets based on binary-
backoff [11]. The backoff length is calculated by uniform
distribution with [0,CW], where CW is given as

CW = CWmin × 2Nr , (3)

where CWmin is the minimum backoff length, and Nr is the
number of retransmissions.

B. CHANNEL MODEL
The received signal power of LoRaWAN node n at GW is
given as

Pr,n[dBm] = Pt,n[dBm]− Ppathloss(dn)[dB]− ψ[dB], (4)

where Pt,n is transmit power of LoRaWAN node n,
Ppathloss(dn) is a path loss component,ψ is shadowing compo-
nent that is a function of location of LoRaWAN node (xn, yn).
Pathloss is given as

Ppathloss(dn) = 10 alog10dn + b+ 10 clog10fc, (5)

where dn is the distance between LoRaWAN node n and the
GW [km], and fc is the carrier frequency [MHz]. Propagation
parameters a, b, and c are the coefficients for distance, offset,
and frequency loss component, respectively. For the propa-
gation model between LoRaWAN nodes, we adopt the same
model given by (4) and (5) with different parameters [13]
because GWs are generally located above LoRaWAN nodes.

C. PROBLEM FORMULATION
Let us denote the PDR of LoWaWAN node n by Pdeln , which
is given by

Pdeln =
Rn
Sn
, (6)

whereRn denotes the number of successfully received packets
from LoRaWAN node n while Sn denotes the number of
packets generated during a predetermined time length Tepoch.
Hereafter, this time length is defined as epoch.

The optimal channel selection aims to choose a proper
channel to maximize the expected PDR of each node, i.e.,

k?n = argmax
kn∈K

E
[
Pdeln

]
, (7)

where E[x] denotes the ensemble average operation.
In this study, channel allocation is executed every epoch.

In this model, Rn depends on the channel allocation of other
nodes due to their interference. This makes the optimization
problem one of combination optimization, i.e. it cannot be
solved in practical time. Moreover, Sn also depends on other
system parameters.. For example, a large Twait i.e. small duty
cycleGmakes the number of transmitted packets small. Thus,
the number of successfully received packets becomes small.
However, interference also becomes smaller as network traf-
fic is reduced. This phenomenon also happens in the case of
large CW.

At GW, it is not possible to know Sn without explicit
feedback from LoRaWAN node n. To solve this problem,
we propose reinforcement learning-based optimization and
approximation of the objective function using only the num-
ber of successfully received packets.

IV. MACHINE LEARNING TECHNOLOGY
A. Q-LEARNING
Reinforcement learning is one of the learning schemes that
search for optimal action from a given situation. The agent is
not given the pair of the specific situation with the optimal
action. However, the agent is given the reward for a specific
situation and a corresponding action. The agent executes the
optimal action based on a reward function that is the sum
of the reward of each action. However, this reward function
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depends on the environment, and it is difficult to solve this
function theoretically. To tackle this, the agent approximates
the reward function from a taken action and a given reward.
This learning scheme is efficient for the specific situations
where actions affect subsequent situations, or for situations
which provide results from a series of actions, e.g. Markov
chain.

1) Q-LEARNING MODEL
Let S and A be a state set and an action set, respectively.
Then, the reward function at time t is approximated by the
following update equation:

Q(St ,At )← Q(St ,At )

+ α [Rt+1 + γmaxa∈AQ(St+1, a)− Q(St ,At )] ,

(8)

where Q(St ,At ) is the expected value of a reward when an
agent takes action At ∈ A in state St∈ S. Rt+1 is an instant
reward at time t + 1 of action At , γ∈ [0, 1] is a discount
rate, and α∈ (0, 1] is a Q-learning rate. This approximation
converges to real reward function (Q?) [16].

2) Q-LEARNING USING NEURAL NETWORK
In traditional Q-learning, the agent needs to keep the Q values
for each pair of state and action by using eq. (8); therefore,
the agent keeps it as a table of state and action because the
Q-value is calculated for each combination of state and
action. This format requires an enormous memory capac-
ity when the number of combinations of state and action
(|S| × |A|) is large. For example, in this study, |S| expo-
nentially increases because it is expressed by the combi-
nation of resources allocated to each LoRaWAN node, i.e.,
|S| = |K||N | and |A| linearly increase,s with the number of
available frequency channels, i.e., |A| = |K|. To avoid such a
large memory capacity requirement , approximating Q values
using a neural network (NN) is proposed [17], which is called
Deep-Q-Network (DQN). An agent can get the approximate
model for input and output functions by giving pairs of input
and output to NN. By using this, NN learns the weights to
output a Q-value approximation for each action At ∈ A from
input of the current state St ∈ S, as shown in Fig.2.

B. NEURAL NETWORK (NN)
NN is one of machine-learning schemes that approximate the
relationship between input and output information using neu-
rons [18]. This learning scheme contains two steps: forward
propagation and back propagation, as shown in Fig.3. In this
research, the GW hasN NNs for each ofN LoRaWAN nodes.
In this section, without loss of generality, we review the NN
function of node n.

1) FORWARD PROPAGATION
NN is composed of neurons and couplings. Each neuron is
arranged hierarchically, and has two functions: reception and
activation, as shown in Fig. 4. First, a neuron obtains the

FIGURE 2. Model of Q-learning based on NN.

FIGURE 3. Forward propagation and back propagation.

FIGURE 4. Calculation model of NN.

weighted sum of output from the previous layer. Then, the
neuron transforms it by an activation function that is generally
nonlinear. Neuron j of layer l receives the weighted sum of the
output of neurons in layer l − 1 as

a(l)n,j
(
z(l−1)n ,w(l−1)

n,j

)
=

∑
i

w(l−1)
n,i,j φ(z

(l−1)
n,i ), (9)

where w(l−1)
n,i,j is the coupling weight from neuron i of layer

l − 1 to neuron j of layer l, z(l−1)n,i is the output of neuron i
in layer l − 1, and φ(x) is a kernel function. For the kernel
function, an ideal function is applied as

φ(x) = x. (10)

Then, neuron j in hidden layer l calculates output z(l)n,j by

applying an activation function to z(l)n,j as

z(l)n,j = f (a(l)n,j), (11)
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where f (·) is the activation function. Generally, rectified
linear unit (ReLU) function fReLU is used for the activation
function, which is given as

fReLU(x) = max(0, x). (12)

2) BACK PROPAGATION
The NN weights, wn = {wln,i,j}, are trained by using the error
function between the output from the NN and the desired
output. Let the error function for given NN weights wn be
E(wn). Then, the optimal NN weights, wn,opt, satisfy

∇E(wn,opt) = 0, (13)

where ∇ is a gradient operator. However, since it is hard to
derive the optimal weights analytically, it is common to derive
it using numerical scheme. The NN parameters are updated
from a learning time τ as

wτ+1n = wτn −1
τ
n, (14)

where 1τn is an update term at τ , and initial weights w0
n are

calculated using Xavier initialization [21].
There are many methods that calculate update term 1τn ,

such as stochastic gradient descent (SGD), adaptive moment
estimation (Adam), etc. The gradient value of each coupling
weight, ∂En

∂w(l)
n,i,j

, is required to calculate 1τn . Back propagation

(BP) is an efficient method to calculate the gradient. Let us
focus on the update of weight w(l)

n,i,j. The gradient is calcu-
lated as

∂En

∂w(l)
n,i,j

← δln,jz
(l)
n,i, (15)

where δln,i is called the error gradient that is expressed as

δln,j =


∂En

∂z(l+1)n,j

∂z(l+1)n,j

∂a(l+1)n,j

if l = L − 2

∂f (a(l+1)n,j )

∂a(l+1)n,j

∑
k w

(l+2)
n,j,k δ

(l+1)
n,k otherwise,

(16)

where L is the number of layers of NN. In this paper, a
squared error is adopted as the error function E(w), which
is given by

E(wn) =
1
2
(on,k − z

(L−1)
n,k )2, (17)

where on,k is the training data, and z
(L−1)
n,k is the approximation

of the training data with output k . In this study, we want
to approximate Q-function, i.e., on,k = Qn,kn where Qn,kn is
actual Q-reward when resource kn is allocated to LoRaWAN
node n.

3) OPTIMIZER
NN parameter w is updated as shown in (14) using the gra-
dient value as described above. For calculating 1τn , there are
several schemes such as SGD and Adam. In SGD, the gra-
dient value is directly used to calculate and update 1τn .

Although SGD can escape from a local optimal point, it has
the slowest convergence. In Adam, the 1st moment of the
gradient is normalized by the 2nd moment of the gradient
in order to adapt the learning rate and stabilize calculation.
By this normalization, the parameter fluctuation can be sup-
pressed.

For NN, a pure perceptron with L layers is adopted in this
paper. Let us define layer 0 as the input layer and layer (L−1)
as the output layer, and the other layers are defined as hidden
layers. The update equation for NN weights depends on the
optimizer. Let us describe the weight update between neuron i
of layer l and neuron j of layer l+1 for the LoRaWAN node n.
In SGD, weight w(l)

n,i,j is updated by

w(l)
n,i,j← w(l)

n,i,j + η ×
∂En

∂w(l)
n,i,j

, (18)

where η is an NN learning rate.
In Adam, the update equation is given by

w(l)
n,i,j← w(l)

n,i,j + η ×
m̂(l)
n,i,j,t√

v̂(l)n,i,j,t + εAdam
, (19)

where m̂(l)
n,i,j,t is the estimated 1st moment of the gradient at

epoch t , v̂(l)n,j,k,t is the estimated 2nd moment of the gradient,
η is the learning rate, and εAdam is a small value to avoid
division by zero. m̂(l)

n,j,k,t and v̂
(l)
n,j,k,t are given by the below

equations:

m̂(l)
n,i,j,t =

m(l)
n,i,j,t

1− β t1
(20)

v̂(l)n,i,j,t =
v(l)n,i,j,t
1− β t2

, (21)

where

m(l)
n,i,j,t =


(1− β1)

∂En

∂w(l)
n,i,j

if t = 0

β1m
(l)
n,i,j,t−1 + (1− β1)

∂En

∂w(l)
n,i,j

otherwise,

(22)

v(l)n,i,j,t =


(1− β2)

(
∂En

∂w(l)
n,i,j

)2

if t = 0

β2v
(l)
n,i,j,t−1 + (1− β2)

(
∂En

∂w(l)
n,i,j

)2

otherwise.

(23)

V. PROPOSED SCHEME
A. DESIGN OF LEARNING MODEL
Let one epoch be composed of the channel allocation, Q value
observation, and learning process. The GW has one indepen-
dent Q-learning equipment for each LoRaWAN node , i.e.,
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GW acts as an agent of Q-learning. The frequency channel
assignment for the next epoch is determined based on the state
at the current epoch. Without loss of generality, we explain
the frequency channel assignment for LoRaWAN node n. Let
us define state set S, action set A, and Q-value as below.

• State S: The combination of the allocated channel
indices of all the nodes. The frequency channel assign-
ment for each LoRaWAN node is represented by one-
hot-K vector, where the element corresponding to the
assigned frequency channel is set to 1, and otherwise
set to 0. Thus, each state St ∈ S is a column vector by
stacking up N one-hot-K vector. For example, suppose
N = 3 and K = 4 and then one possible state is given
by (1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0).

• Action A: The set of channel indices which can be
allocated to node n.

• Q-reward Qn,kn : The weighted sum of the number of
received packets. It is adjusted by the ratio of the number
of received packets from the node n of interest and the
minimum number of received packets of other nodes,
which is given as

Qn,kn = Dn,t+1 + ν×

∑
n′∈N \n Dn′,t+1
N − 1

, (24)

where Dn,t is the number of successfully received pack-
ets from LoRaWAN node n during epoch t , and ν is a
selfish parameter that adjusts priority between node n’s
reward and that of other nodes. The selfish parameter ν
is expressed as

ν = tanh
(

Dn,t+1
minn′∈N \n Dn′,t+1

)
. (25)

When ν is small, node n acts selfishly and tries to
increase its own number of received packets. On the
other hand, if ν is large, GW attempts to equalize the
performance of all nodes through resource allocation to
node n.

This learning contains a two step learning comprised of
wireless environmental learning and optimal resource selec-
tion. The first part learns the wireless environment around
each LoRaWAN node from the input channel allocation state.
For example, this learning tries to understand which pair of
LoRaWAN nodes do not interfere with each other even if
they are allocated to the same frequency channel. The second
part is frequency channel allocation based on the wireless
environment. Based on the learned wireless environment, the
optimal frequency channel is assigned to each LoRaWAN
node. In the proposed scheme, the two steps are connected
and the frequency channel allocation is performed based on
the input frequency channel allocation state.

B. RESOURCE ALLOCATION USING Q-LEARNING
The GW allocates one of K frequency channels to each
LoRaWAN node based on the output from NN as follows.
We show the allocation algorithm at epoch t .

FIGURE 5. Proposed model.

Step1 The agent inputs the current resource allocation
state St to the NN of each LoRaWAN node and
obtains output Q-value Qn,kn from each NN.

Step2 With probability ε(t), the GW randomly allocates
one of K frequency channels to LoRaWAN node
n. With probability ( 1 − ε (t)), the GW allocates
frequency channel k?n to LoRaWAN node n, where
k?n is given by

k?n = argmax
kn∈K

Qn,kn (St ). (26)

Step3 The GW observes the number of successfully
received packets for state St .

By this, the GW can allocate the frequency channel that max-
imizes the number of successfully received packets having a
correlation with the PDR to each LoRaWAN node.

VI. SIMULATION RESULTS
A. SIMULATION PARAMETERS AND MODEL
In this section, we provide computer simulation results to
verify the performance of the proposed scheme. In this simu-
lation, node-GW shadowing is calculated by a spatially cor-
related shadowing model [12]. This component is expressed
as a function of the location of node ψ(xn, yn). Between
LoRaWAN nodes, shadowing is calculated using uncorre-
lated shadowing because the nodes are located near ground
height, and the shadowing correlation is very low due to
the distance between nodes. This component is therefore
expressed as the function of nodes index ψ(n, q) where n
and q are indices of nodes. In both situations, uncorrelated
shadowing is based on log-normally distributed shadowing
loss with zero-mean and standard deviation of σ [dB]. The
wireless system parameters and the learning parameters are
summarized in Tables 2 and 3, respectively. LoRaWAN’s
parameter is derived from the Japanese parameter configu-
ration AS923 from document [14]. For learning parameters,
we compare learning schemes and models, e.g. the number
of layers, learning rate, optimizers, activate functions, etc.
The optimal combination of learning parameters and schemes
is used for PDR performance evaluation. For the ε-greedy
scheme, ε(t) is given as

ε(t) =
T − t
T

, (27)

where t is the current epoch, and T is the number of epochs.
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TABLE 2. Wireless system parameter.

TABLE 3. Learning parameter.

FIGURE 6. Correlation between the number of the number of received
packets and PDR.

B. CORRELATION OF PDR AND THE NUMBER
OF RECEIVED PACKETS
We first validate the use of the number of received pack-
ets for PDR improvement. Fig. 6 shows the average PDR
performance as a function of the number of received pack-
ets. In order to quantitatively show the correlation between
these two metrics, the Pearson product moment correlation

coefficient [20] is calculated as

ρ =

T−1∑
t=0

N−1∑
n=0

(Rn,t − R)(Pdel,n,t − Pdel)√√√√T−1∑
t=0

N−1∑
n=0

(Rn,t − R)2)
T−1∑
t=0

N−1∑
n=0

(Pdel,n,t − Pdel)2)

,

(28)

where R and Pdel are average values of PDR and the number
of received packets. The Pearson correlation coefficient ρ2

is approximately 0.95 for cluster 0 and 0.70 for cluster 1 for
this setup. For other parameter setups, the following cases are
considered

Case 1 N = 500 and Tinterval = {120} [sec]
Case 2 N = 1000 and Tinterval = {60, 300} [sec] with

uniform probability.
For Case 1, ρ2 is approximately 0.86. For Case 2, ρ2 is
approximately 0.97 for cluster 0 (i.e., Tinterval,n = 60 [sec]),
and approximately 0.84 for cluster 1 (i.e., Tinterval,n =
300 [sec]). Thus, these results indicate that the number of
successfully received packets and the PDR have a strong
correlation, justifying the use of the number of successfully
received packets instead of PDR.

FIGURE 7. Impact of the number of layers, L.

C. COMPARISON OF LEARNING SCHEME
1) NUMBER OF LAYERS
It is well known that the number of layers L has a strong
impact on the output value of NN. Fig. 7 shows the impact
of L on the PDR performance when ReLU activation is used
for the activation function. SGD is adopted as an optimizer.
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As shown in Fig. 7, the optimal number of layers is 4 for the
ReLU activation function. This can be explained as follows.
If the number of layers is too small, the performance of the
NN is insufficient to express the relationship. On the other
hand, if the number of layers is too large, the so called vanish-
ing gradient problem [21] occurs. In other words, the gradient
of the error function approaches zero, so the NN cannot be
trained. This problem becomes more obvious as the number
of layers increases. Moreover, the initial state is not good
when the number of layer is large. However, the NN can
be effectively trained when the gradient of error function
is sufficiently large. Thus, an appropriate number of layers
exists. In the following evaluation, L = 4 is used for NN
with the ReLU activation function.

The reason for the stair-like curve is as follows. Because
the PDR is evaluated at each epoch as shown in eq. (6),
the maximum number of packets to be received is at most
Tepoch/Tinterval,n + 1 = 11. Thus, for example, the PDR
performance takes an integer multiple of 1/11.

2) LEARNING RATE
Next, the impact of the optimizer on the PDR performance is
shown for each activation function.

FIGURE 8. Impact of learning rate, η.

Figure 8 shows the PDR performance when the SGD
optimizer and the Adam optimizer are used. For the SGD
optimizer, learning rate η = 10−2 shows the best PDR
performance, while η = 10−3 provides the best performance
when the Adam optimizer is used.

3) LEARNING SCHEME
Based on the optimum values for the number of layers L
and the learning rate η for each optimizer, the root mean
squared error (RMSE) convergence property and the PDR
performance of each learning scheme is shown in Fig. 9.

FIGURE 9. Comparison of learning schemes.

The RMSE is defined as

RMSE =

∑N−1
n=0 (Qn,kn − z

(L−1)
n,k )2

N
. (29)

Fig. 9a shows that, although the RMSE becomes smaller
as learning progresses, it does not converge to 0. This is
because, in this learning model, each node may change the
resource index used in epoch t + 1 from that in epoch t;
thus, the Q-value is not always stable on state St . This result
shows that the SGD optimizer can become small faster than
the Adam optimizer. If the Adam optimizer is used, the latter
data sets have relatively small effects relative to the for-
mer. This results in the latter part having worse convergence
performance. Fig. 9b shows the CDF of PDR for different
combinations of activation function and optimizer. Although
the difference between the performances of two optimizers
is relatively small, the computational complexity of Adam
is greater than that of SGD. This is because Adam requires
additional computations such as the square root of the second
moment. Thus, in the following evaluation, SGD optimizer is
used.

D. PDR PERFORMANCE
Fig. 10 shows how the learning proceeds. It can be seen
from the figure that the PDR value improves as learning
progresses.

The impacts of number of frequency channels K and CS
threshold 0CS on the CDF of PDR performance are shown
in Fig. 11 and Fig. 12. Fig. 11 shows that the performance
improvement from the proposed scheme depends on the num-
ber of available frequency channels,K .WhenK = 8, the pro-
posed scheme can improve the average PDR performance
by 20%, compared with the conventional random allocation.
However, when K = 16, this performance improvement
becomes slightly smaller and is approximately 13%. This is
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FIGURE 10. Process of learning.

FIGURE 11. Impact of the number of resources, K .

because random channel hopping can avoid packet collision
if the system has a sufficient number of channels. In a typi-
cal LoRaWAN system, only a small number of channels is
available. For example, in the EU standard, the minimum
number of channels is set to 3 [6]. Thus, it can be said that the
proposed scheme is more effective in a practical environment.
From the figure, it can be seen that there are sharp transitions
of performance at PDR close to 1 and 0 (this is more obvious
for a small number ofK ). These phenomena can be explained
as follows. First, the reason for the sharp transition close
to PDR = 1 is due to the nodes close to a GW. Because
such nodes are close to GW, the received signal power at

FIGURE 12. Impact of CS threshold, 0CS.

GW is considerably high; therefore, their PDR performances
is almost 1 even under interference. Second, the reason for
the sharp transition close to PDR = 0 is due to the inter-
ference among the LoRaWAN nodes. Even with the pro-
posed scheme, strong mutual interference among the nodes
may occur. If the mutually interfering LoRaWAN nodes are
assigned to the same frequency channel, they interfere with
each other and result in packet loss. If the number of available
frequency channel K is small, this interference cannot be
avoided by random channel hopping.

Because the PDR performance of LoRaWAN with
CSMA/CA highly depends on how accurately each
LoRaWAN node can CS with each other, we evaluate the
impact of the CS threshold 0CS. Fig. 12 shows that as 0CS
becomes lower, the conventional random channel allocation
can slightly improve the PDR performance by avoiding
packet collision. However, even when 0CS is low, packet
collisions still happen due to the correlation of the packet gen-
eration timing. On the other hand, the proposed scheme can
provide much better performance irrespective of 0CS because
the proposed scheme can allocate frequency channels to avoid
packet collision depending on hidden terminal relations and
the correlation of packet generation. The proposed scheme
can avoid allocating identical channel frequencies to nodes
that either have the same packet generation timing or cannot
CS each other. Through the learning, the proposed scheme,
having higher priority, avoids one of the two factors that
significantly impact the PDR performance degradation.

E. WIRELESS ENVIRONMENT RECOGNITION
There are two factors that result in packet collision:
CS availability and packet transmission timing collision.
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To evaluate those factors, we define three metrics, i) CS
rate PCS, ii) packet transmission timing difference TPG(n, q),
and iii) mean packet transmission timing difference in each
frequency channel T PG(k) with k ∈ K. First,PCS is defined as

PCS,

∑
k∈K

∑
n∈C(k)

∑
q∈C(k) ICS(n, q)∑

k∈K
∑

n∈C(k)
∑

q∈C(k) 1
, (30)

where k is the frequency channel index, n and q are the node
indices, C(k) is the set of LoRaWAN nodes allocated to the
frequency channel k , ICS(n, q) is the indicator functions
given by

ICS(n, q) =

{
1, if node n and node q can CS each other
0, otherwise

.

(31)

TPG(n, q), and T PG(k) are defined as

TPG(n, q) = min
i,j
|tni−tqj | s.t.n, q ∈ C(k), (32)

T PG(k) = En,q[TPG(n, q)], (33)

where tni is the approximated starting time of transmission
of packet i from node n. This is given by

tni = TOffset,n + i× δpacket,n, (34)

where δpacket,n is the interval between packet i − 1 and i,
which takes into account the duty cycle Twait as δpacket,n =
max

(
Tinterval,n,Twait,n,i

)
. Because GW also shall follow the

duty cycle [22]. packet retransmission is not allowed. Thus,
the error between the actual packet transmission starting time
and the approximated one is negligible, i.e., on the order of
contention window.
If the CS rate PCS is high, the LoRaWAN nodes allocated

to the same frequency channel can CS each other; hence,
packet collision can be avoided. If the packet generation
timing difference TPG(n, q) is large, the LoRaWAN nodes
allocated to the same frequency channel can also avoid packet
collision. Thus, from the view point of wireless environment
recognition and frequency channel allocation, it is desirable
to have high PCS or large TPG(n, q).

1) CS RATE
The CS rate, PCS, of random allocation and the proposed
scheme are shown in Fig. 13 The figure shows that the
proposed scheme improves PCS slightly, compared with ran-
dom allocation. This is because the packet generation timing
difference is more dominant than CS availability. In the fol-
lowing, we show this.

2) PACKET TRANSMISSION STARTING TIME
The CDF performances of packet transmission with starting
time difference TPG(n, q) of the proposed scheme and the
conventional random allocation scheme are plotted in Fig. 14.
For reference, the performance of the system with K = 1
is also plotted. As Fig. 14a shows, the proposed scheme
can slightly increase the value compared with the random

FIGURE 13. CS Ratio.

FIGURE 14. Performance of packet transmission starting timing
difference.

allocation by allocating frequency channels such that the
LoRaWAN nodes in the same frequency channel have a
greater time difference. Fig. 14b shows the mean value of
the packet transmission starting time difference, T PG(k). This
result shows that the variance of mean difference is greater for
the proposed scheme. Although the improvement is marginal,
the PDR performance is significantly improved. From these
results, it is indicated that the proposed scheme can increase
the mean of difference, while maintain the required transmis-
sion time difference.

This trend becomes obvious if the packet generation tim-
ing offsets of LoRaWAN nodes are close to each other.
We assume the case that TOffset,n is randomly selected from
six predetermined values. If the LoRaWAN nodes in the
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FIGURE 15. Performance of packet transmission starting timing
difference when timing offset is clustered.

same frequency channel have the same TOffset,n, then we
have TPG(n, q) = 0. As Fig. 15 shows, the probability
having TPG(n, q) = 0 can be significantly lowered by the
proposed scheme compared with random allocation. Further-
more, T PG(k) of the proposed scheme is 3 [sec] greater than
that of random channel allocation. Thus, the proposed scheme
can effectively avoid packet collision among LoRaWAN
nodes in the same frequency channel.

VII. CONCLUSION
In this paper, we have proposed a wireless resource allocation
scheme to avoid mutual interference from hidden nodes in
CSMA/CA and from traffic collision, and we have evaluated
this scheme using computer simulation. By searching for an
optimal resource allocation that can maximize the weighted
sum of the number of successfully received packets from each
node using Q-learning and NN approximation, each node can
avoid packet collision without explicit feedback. From com-
puter simulation, it is shown that the proposed scheme can
improve the average PDR performance by about 20%. These
results indicate that the proposed method could improve
packet delivery performance without preparingmore wireless
resources and explicit feedback that drain LoRaWAN node
batteries.
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