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ABSTRACT Owing to the recent research and development on the Internet-of-Things (IoT) and
machine-to-machine (M2M) communication, wireless sensor networks have attracted considerable attention.
Among these networks, low power wide area networks (LPWANs), which realize low power, low data rate,
and wide communication area, are most commonly used for long-range communication. These networks
adopt asynchronous random-access protocols, such as the pure ALOHA protocol in the medium access
control (MAC) layer. Thus, there is a high possibility that multiple nodes transmit packets simultaneously on
the same frequency channel, resulting in packet collisions. Carrier-sense multiple access/collision avoidance
(CSMA/CA) and centralized resource allocation are effective for avoiding packet collisions. However, these
schemes increase the energy consumption of battery-powered LPWAN nodes. In addition, LPWAN has a
large coverage area; hence, there is a high possibility that the carrier sense will not work successfully.
Thus, this paper proposes a simple but effective machine-learning-based scheme that tackles the packet
collision problem by offsetting the transmission timings and avoiding unnecessary packet transmission in
an autonomous decentralized manner. Each LPWAN node adjusts the transmission probability and timing
using the Q-learning technique. The proposed scheme provides effective packet collision avoidance for
LPWAN nodes without the need for an additional control signal. The computer simulation results show
that the proposed scheme can improve the average packet delivery ratio (PDR) by 60% compared to the pure
ALOHA protocol.

INDEX TERMS Internet of Things (IoT), LoRaWAN, low power wide area networks (LPWAN), machine
learning, resource allocation.

I. INTRODUCTION
Owing to the advancements in the field of the Internet of
things (IoT) and machine-to-machine (M2M) communica-
tions [1], wireless sensor networks (WSNs) that gather sens-
ing information have become important infrastructures for
IoT applications.WSNs aim to collect event information such
as facts regarding fire and floods in a particular area [2] as
well as environmental information through periodic sensing.
Low power wide area networks (LPWANs) have become
the focus of considerable research attention because they
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can achieve low power, low data rate, and a wide commu-
nication area, which are crucial characteristics in realizing
the WSNs [3]. Thus, LPWAN is expected to be applied in
smart cities, environmental monitoring, and smart meters.
It adopts interference and noise-tolerant modulation schemes,
such as binary phase-shift keying (BPSK) and chirp spread
spectrum (CSS) modulations [4] as a physical layer modu-
lation scheme to enable long-distance transmission. Because
LPWANnodes need to be inexpensive, they generally possess
low quality and low-cost circuit configurations [3]. There-
fore, LPWAN adopts asynchronous random-access protocols,
such as the pure ALOHA protocol in the medium access
control (MAC) layer.
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In asynchronous random-access protocols, packet colli-
sions occur when multiple nodes simultaneously transmit
packets using the same frequency channel. Once a packet
collision occurs, the receiver cannot demodulate the packets
correctly. The traffic in LPWAN is dominated by uplink
communication for data collection [5], and packet collisions
become a serious problem when the number of LPWAN
nodes is large. One cause of packet collision in LPWAN
is the simultaneous packet transmission triggered by event
detection [5]. An example of an event is a change in the soil
moisture content in land under smart farming that sets off a
trigger [6]. If multiple nodes detect an event, they simultane-
ously transmit data packets. Thus, owing to packet collisions
along the way, the gateway (GW) may not detect the event.
Furthermore, there are limitations on the duty cycle (DC) in
LPWAN. The DC determines the transmission time ratio at
which each LPWAN node can occupy a specific frequency
channel. The LPWAN node accessing the unlicensed bands
should set DC in accordance with the regulation of each
county or region for frequency sharing among other sys-
tems [7]. If a packet collision occurs, the LPWAN cannot
retransmit the packet immediately but has to wait for a certain
period decided by the DC. The latency caused by the DC
for packet retransmission is unacceptable for applications that
need to recognize events immediately. Therefore, developing
a packet collision avoidance technology is urgently needed.

One such technology in LPWAN is the carrier-sense mul-
tiple access/collision avoidance (CSMA/CA), also known as
listen-before-talk (LBT). Each node checks the frequency
channel before transmitting a packet [8]. However, the
CSMA/CA approach may not be an appropriate solution for
LPWAN because of the increased node energy consumption
that takes place due to carrier sensing [9]. The success of the
carrier sense (CS) depends on the CS threshold. Moreover,
the hidden node problem occurs because there is a high
probability that signals cannot be detected by the CS owing
to the large coverage area in LPWAN [10].

Another approach to avoid packet collision is to allo-
cate appropriate resources to the nodes. Various resource
management schemes have been proposed to address this
issue [11]–[13]. In [11], the optimization problem has been
formulated to maximize the average system packet success
probability in LPWAN, and LoRaWAN. A quasi-optimal
spreading factor (SF) allocation algorithm is proposed based
on the aforementioned formulated problem. A centralized
channel allocation algorithm based on the matching theory
was proposed by [12]. In [13], a joint allocation problem
of SF and power was formulated, and an algorithm based
on it was proposed. These approaches are optimized in a
static environment that depends on a formulated mathe-
matical model. Recently, machine-learning-based resource
management schemes for IoT networks have been proposed
[14]–[19] by applying reinforcement learning, such as
Q-learning [20] and multi-armed bandit learning [21].
Reinforcement learning can realize dynamic resource allo-
cation in response to the environment because the learning

process calculates the reward based on feedback from the
environment [22]. However, these models do not capture
probabilistic factors, such as event-triggered traffic. In [5],
the traffic of LPWAN was modeled and the network perfor-
mance was evaluated by considering an event-triggered traf-
fic. However, packet collision avoidance in event-triggered
traffic has not yet been discussed. In [5], a resource allo-
cation scheme for the IoT considered unusual traffic due to
anomaly detection. This approach improves the throughput
by allocating frequency channels and backoff window sizes
to the nodes. However, dynamic resource allocation using this
schememay require the implementation of complex protocols
and synchronization mechanisms [23].

Therefore, the LPWAN needs a dynamic and low-overhead
resource allocation strategy. It also needs to accommodate
event-triggered traffic by suppressing packet collisions.

This paper proposes an autonomous decentralized traffic
control system using Q-learning that ensures packet col-
lision avoidance and improves the communication quality.
It should be noted that similar to the ALOHA and CSMA/CA,
the proposed scheme does not require any synchronization
between LPWANnodes; in particular, it consists of two steps.
First, the LPWAN node detecting the event determines the
transmission timing offset autonomously using Q-learning.
When an event occurs, several LPWAN nodes may detect
an event almost simultaneously. Strategically shifting event
packet transmission timing can effectively avoid packet col-
lisions. Second, the LPWAN nodes probabilistically trans-
mit event packets. When multiple nodes observe the same
event, the information transmitted by them is highly cor-
related. Thus, there is little need for all LPWAN nodes to
transmit packets to a GW. A decrease in the number of
event packets leads to a decrease in the probability of packet
collisions. The proposed scheme has the following three
advantages:
(i) It does not need complex control signals and

synchronization between the LPWAN nodes to allocate
wireless resources. In other words, asynchronous man-
agement between LPWAN nodes is possible.

(ii) It can realize dynamic resource allocation independent
of the LPWAN system model as a result of adopting
reinforcement learning. The LPWAN nodes converge
to a state suitable for the given system.

(iii) It is a powerful and simple algorithm that can be
run on LPWAN nodes with a low computational
capability.

Computer simulation results show that the proposed
scheme can improve the average packet delivery rate (PDR)
by 60% compared to the conventional ALOHA protocol in
the LoRaWAN environment [24].

The remainder of this paper is organized as follows.
In Section II, we describe the proposed system model.
In Section III, an autonomous decentralized traffic control
is proposed. In Section IV, simulation results are provided
to demonstrate the effectiveness of the proposed scheme.
Section VI concludes the paper.
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FIGURE 1. Event model.

II. SYSTEM MODEL
A. NETWORK MODEL
We consider a WSN based on LPWAN, where I LPWAN
nodes (I = {1, · · · , i, · · · , I }) are randomly and uniformly
distributed within the communication area of L × L km2.
The LPWAN nodes are connected to a single GW located
at the center of the communication area. The system has K
orthogonal frequency channels (K = {1, · · · , k, · · · ,K }),
and each LPWAN node selects a frequency channel and
transmits a packet to the GW.

B. EVENT GENERATION AND DETECTION
LPWAN nodes detect events that occur within a communi-
cation area. An event occurs at a specific location, which is
determined randomly. An LPWAN node detects the event;
the LPWAN transforms the event into numeric data called
event true data, x ∈ [xmin, xmax], where xmin and xmax are
the minimum and maximum numerical values, respectively.
The event occurrence information with event true data x
propagates from the event epicenter with a speed of V m/s
outwardly in a circle, as shown in Fig. 1. LPWAN node i
detects an event with a probability of δi, which is given by [5]

δi = e−αde,i , (1)

where α is the event propagation coefficient and de,i m is the
distance between the LPWAN node i and the event epicenter.
The LPWAN node i that detects an event observes the sensing
data xsensi , which is the event true value with an error based
on the sensor accuracy. The sensing data, xsensi , are given by

xsensi = x + ei, (2)

where ei is a Gaussian random variable that follows a standard
normal distribution N (0, 1).

C. TRAFFIC MODEL
1) PACKET GENERATION
This study assumes two types of traffic: regular traffic and
event-triggered traffic. Regular traffic represents the data
packets transmitted periodically from each LPWAN node.
Such data packets are generated at every predetermined
packet generation interval Gp sec. The LPWAN node i trans-
mits the first periodic packet at Toffset,i determined by a ran-
dom number generated according to U

(
0,Gp

)
, where U(a, b)

is a uniform random variable generated in the range (a, b).

Event-triggered traffic represents the data packets generated
by event detection.

2) PACKET TRANSMISSION
In this paper, we define the transmission phase as the period
from the start of packet transmission to its end. Without loss
of generality, all packets are assumed to have the same packet
length and DC constraint for packet transmission. Thus, each
LPWAN node must satisfy the DC constraint. We define the
DC constraint as

TDC,i =
(
1− Dc

Dc

)
TL,i, (3)

where Dc ∈ (0, 1] is the DC, and TL,i sec is the packet
transmission duration. TDC,i sec denotes the minimum time
required to wait for the next packet to be transmitted to
satisfy the DC constraint. In the first case, the LPWAN node i
generates a new packet during the packet transmission phase.
In the second case, the LPWAN node i generates a new packet
within TDC,i.
Because the collection of event information is essential,

the LPWAN node transmits the event packet as a confirmed
message to guarantee successful communication. When the
GW successfully receives the event packet of the confirmed
message, it replies with an acknowledgment (ACK) signal to
the sender LPWAN node.

III. PROPOSED SCHEME
This section describes the proposed autonomous decentral-
ized traffic control scheme using Q-learning. The scheme
comprises two steps: controlling the event packet transmis-
sion probability and controlling the event packet transmission
timing.

A. EVENT PACKET TRANSMISSION PROBABILITY
When an event occurs, multiple LPWAN nodes detect
it almost simultaneously. Thus, once an event occurs,
an event-triggered traffic dominates the network traffic.
It is challenging to determine the number of LPWAN
nodes that simultaneously detect an event precisely. As all
event-triggered packets contain the event true data with an
observation error at each LPWAN node, there is a high cor-
relation among the obtained data. Therefore, the GW can
accurately estimate the true event data with a small number of
event packets. Thus, limiting the number of nodes that trans-
mit event packets can reduce the packet collision probability
and improve the communication quality. To limit the number
of nodes transmitting event packets, we define an event packet
transmission probability ps,i ∈ (0, 1] for the LPWAN node
i. The event packet transmission probability ps,i determines
whether to transmit an event packet, as shown in Fig.2.

The event packet transmission probability ps,i at the
LPWAN node i is automatically controlled based on the ACK
signal as

ps,i =
1+M ack

i

1+M tran
i

, (4)
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FIGURE 2. Reduction in the number of transmitting devices by ps,i .

where M ack
i is the number of ACK signals and M tran

i is the
total number of event packets transmitted by the LPWAN
node i. By evaluating the event packet success rate at each
node using (4), the transmission probability of nodes with
a low event packet success rate is reduced. Nodes with low
event packet success rates are most likely to undergo packet
collisions, which may negatively affect the other LPWAN
nodes.

B. ADAPTIVE RESOURCE ALLOCATION USING
Q-LEARNING
The communication resources generally used in LPWAN are
the time and frequency channels. As stated earlier, when an
event occurs, multiple LPWAN nodes detect it almost simul-
taneously and transmit event packets. As a result, packets
are transmitted densely in the time domain, which causes
packet collisions. Thus, packet collisions can be avoided by
strategically shifting the transmission timing. In the proposed
approach, each LPWAN node detects an event and then
autonomously selects the transmission timing offset deter-
mined by reinforcement learning.

1) Q-LEARNING
Q-learning is a popular reinforcement learning technique; it
learns actions that maximize the reward for the environment
through repeated trial and error. Because Q-learning does
not require computationally intensive calculations, such as
matrix operations, it is easy to run it on LPWAN nodes. In
Q-learning, a learning machine is called an agent. In our
proposed scheme, each LPWAN node was installed as a
Q-learning agent. The Q-learning agent observes a state that
indicates environmental information and decides an action
based on a Q-table. The Q-table stores Q-values, which rep-
resent the evaluation values of actions in a specific state.
The agent updates the Q-table based on the rewards received
from the environment through its actions, which is called
exploration. If the exploration is sufficiently successful, it is
guaranteed to converge to the optimal solution thatmaximizes
the reward [25]. However, the larger the Q-table size, the
larger the exploration volume becomes; thus, it is difficult to
conduct an exploration in a real system. Thus, we propose a
resource allocation scheme using Q-learning with as small a
Q-table as possible. The agent can observe its own frequency
channel and the transmission timing offset. However, it is

FIGURE 3. Event packet transmission with a time slot.

possible to reduce the amount of exploration by considering
only the transmission timing offset in the Q-table. There-
fore, the frequency channel used by the LPWAN node is
first randomly assigned, and subsequently, only the assigned
frequency channel is used.

2) TRANSMISSION TIMING OFFSET
Let TL,i be the packet transmission duration of LPWAN
node i. The LPWAN node i is randomly allocated
a set of transmission timing offset indices Di =

{0,Di,1, · · · ,Di,j, · · · ,Di,J |Di,j ∼ U ′(1,Dmax)}, where J
is the total number of candidate transmission timing off-
set index, U ′(a, b) is an integer uniform random number
generated in the range [a, b], and Dmax is the maximum
transmission offset index. Upon detecting an event, LPWAN
node i waits for the transmission timing offset T off

i sec and
then transmits an event packet, as shown in Fig. 3. The
transmission timing offset T off

i is given as follows:

T off
i = T slot

i × Di,j? , (5)

where T slot
i sec is a time slot of the same length as the packet

transmission duration TL,i andDi,j? ∈ Di is the selected trans-
mission timing offset index with j? being the transmission
timing offset index determined by Q-learning.

3) LEARNING MODEL
In this paper, epochs represent periods of real-time length that
are pre-determined for Q-learning. Thus, an epoch is defined
as follows:
(i) LPWAN node i determines its own transmission timing

offset index Di,j? .
(ii) An event occurs and the node detects it.
(iii) After waiting for T off

i , the LPWAN node i transmits an
event packet with a probability ps,i.

(iv) Reward is calculated and Q-value updated.
Let us define the set of states and set of actions A in
Q-learning as follows:
• Set of stateDi: The set of selectable transmission timing
offset indices of the LPWAN node i.

• Set of action A: The set of changes in the transmis-
sion timing offset T off

i . The elements are denoted by
A = {1, 0,−1}, where 1, 0,−1 indicates that Di,j? is
set larger, kept unchanged, or set smaller, respectively.
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The agent of LPWAN node i is defined as
• State si,z ∈ Di: The transmission timing offset index of
node i observed by the agent in epoch z

• Action ai,z ∈ A: The transmission timing offset index
change in epoch z.

• Reward ri,z: Reward value from the environment by
taking action ai,z.

• Q-value Q
(
si,z, ai,z

)
: Value of action ai,z at state si,z.

For an efficient exploration of the Q-table, we adopt the
ε-greedy algorithm that uses probability ε ∈ [0, 1] to explore
and exploit the Q-table. At epoch z, εi,z is given as

εi,z = 1−
M tran
i

Z
, (6)

where Z is the total number of epochs. The exploration is
performed with a probability εi,z, and the exploitation is per-
formed with a probability 1 − εi,z. Then, the Q-value is
updated as

Q
(
si,z, ai,z

)
= Q

(
si,z, ai,z

)
+ ηETD

i,z , (7)

where ETD
i,z is the temporal difference error and η is the

Q-learning rate. A temporal difference error ETD
i,z is given as

ETD
i,z =ri,z+1+β

(
max

a?∈A(si,z+1)
Q(si,z+1, a?)−Q

(
si,z, ai,z

))
,

(8)

where β is the discount rate. In Q-learning, the Q-value is
updated by considering the maximum reward value that can
be expected in a transitioning state at an epoch z+ 1.

4) REWARD FUNCTION
In Q-learning, the reward function is vital because it learns
the action that maximizes the sum of the rewards. We aim
to determine the timing of all the packet transmissions to
avoid any packet collisions. Therefore, we adopted the ACK
signal as a measure of packet collision avoidance. If the
LPWAN node receives the ACK signal, it positively evaluates
the transmission timing offset used for event packet trans-
mission. However, if the LPWAN node does not receive the
ACK signal, the Q-learning agent will negatively evaluate
the transmission timing offset. Thus, the reward function is
given as

ri,z =

{
1 if ACK is received
−1 otherwise

. (9)

C. TRAFFIC CONTROL ALGORITHM
The LPWAN node i transmits a packet using the frequency
channel ki, which is randomly selected from K and is then
fixed. Algorithm 1 shows the traffic control algorithm for
node i. The LPWAN node i that detects an event decides to
transmit the event packet by taking into consideration the
event packet transmission probability ps,i. When an event
packet is transmitted, the LPWAN node i determines the
transmission timing offset T off

i based on Q-learning. When
the predetermined total number of epochs Z has elapsed,

Algorithm 1 Traffic Control Algorithm for Node i
1: Input:
2: K = {1, · · · , k, · · · ,K }, T > 0, J > 0,

Di = {0,Di,1, · · · ,Di,j, · · · ,Di,J |Di,j ∼
U ′(1,Dmax)}

3: Initialization:
4: Epoch counter z = 1

Allocate frequency channel ki ∈ K
Transmission probability ps,i = 1
Set of states Di
Set of actions A = {1, 0,−1}
Q-table Q

(
si,z, ai,z

)
∼ U(0, 1)

5: while z < Z do
6: Determine Di,j? by Q-learning agent
7: if Generate event packet then
8: if ps,i > U(0, 1) then
9: Transmit event packet
10: Update M tran

i ← M tran
i + 1

11: Calculate reward ri,z by (9)
12: Update Q-table Q

(
si,z, ai,z

)
by (7)

13: else
14: Discard event packet
15: end if
16: Update ps,i by (4)
17: end if
18: Update z← z+ 1
19: end while
20: Output:
21: Fix ps,i and Di,j?

Q-learning is terminated and LPWAN node i fixes the event
packet transmission probability ps,i and transmission timing
offset T off

i .

IV. SIMULATION AND RESULTS
A. LoRaWAN MODEL
For the computer simulation of our proposed scheme,
we adopted LoRaWAN. LoRaWAN is a popular LPWAN
technology developed and commercialized by Semtech Cor-
poration. It adopts a unique modulation scheme in the phys-
ical layer based on CSS modulation and frequency shift
keying (FSK) called LoRa modulation [26]. LoRa modu-
lation has a high level of interference tolerance. This is
because it spreads a narrowband signal into a wider band-
width, thus reducing the noise level of the output signal
[27]. Thus, LoRa modulation can realize long-range com-
munication. An important parameter in LoRa modulation
is the SF, which determines the number of transmitted bits
in a CSS-modulated symbol [28]. The SF takes values
from 7 to 12. Let SF be SSFi ∈ S = {7, 8, 9, 10, 11, 12}
at LoRaWAN node i, and one CSS-modulated symbol time
length Ts,i(SSFi ) is given by

Ts,i(SSFi ) =
2S

SF
i

W
, (10)

where W Hz is the frequency bandwidth. The LoRaWAN
packet physical structure consists of a preamble,
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a synchronization word, a physical header, a header cyclic
redundancy check, a physical payload, and a payload cyclic
redundancy check (CRC) [29]. Let the number of symbols
other than the physical payload and CRC be the number
of overhead symbols Osym. Let the number of packet data
sizes be Bdata,i bit that includes the physical payload and
CRC. Thus, the required number of CSS symbols Ns,i(SSFi )
to transmit one data packet is given by [30]

Ns,i(SSFi ) = Osym +

⌈
Bdata,i/R

SSFi

⌉
, (11)

where dxe is the ceiling function of x, and R is the coding rate.
Therefore, packet transmission duration TL,i is given as

TL,i = Ts,i(SSFi )× Ns,i(SSFi ). (12)

B. CHANNEL MODEL
In this paper, path loss and log-normally distributed shadow-
ing loss were considered for a channel model. The received
signal power of the LoRaWAN node i at the GW is given as

Pr,i = Pt − PLoss(di)− ψ, (13)

where Pt dBm is the transmission power common to all
LoRaWAN nodes, and ψ dB is a log-normally distributed
shadowing. From [31], the path loss component PLoss(di) dB
is given as

PLoss(di) = 10µ log10 di + ν + 10ξ log10 fc + ζ, (14)

where di m is the physical distance between LoRaWAN node
i and GW, propagation parameters µ, ν, ξ are the path loss
coefficient, offset, and frequency loss component, respec-
tively, fc GHz is the carrier frequency, and ζ is a Gaussian
random variable of the distribution of N (0, σ ). The signal-
to-noise power ratio (SNR) and signal-to-interference power
ratio (SIR) of LoRaWANnode i observed at the GW are given
by {

γSNR,i = Pr,i −
(
N0 + 10 log10W + NF

)
γSIR,i = Pr,i −

∑
i′∈Ii Pr,i′ ,

(15)

where N0 dBm/Hz is the noise power spectrum density, NF
is the noise figure, and Ii is the set of interfering LoRaWAN
nodes that transmit packets using the same frequency channel
as the LoRaWAN node i. In this study, we determine the
success of packet demodulation through the SNR threshold
0SNR,SSFi

, and the SIR threshold 0SIR,SSFi
at GW [14]. We use

the SNR threshold and the SIR threshold to consider the
capture effect due to an imperfect orthogonality between
different SFs in LoRa modulation [32].

When only one packet is received by the GW, it is assumed
that the packet is successfully demodulated if SNR γSNR,i
is above the threshold 0SNR,SSFi

. When multiple packets are
received on the same frequency channel, we consider two
cases [34].
• When the SF is different among the received signals, SIR
thresholds0SIR,SSFi

, which are shown in Table 1, are used
[32], [33].

TABLE 1. SNR and SIR thresholds [32], [33].

TABLE 2. Simulation parameters.

TABLE 3. Q-learning parameters.

• When all received signals use the same SF SSF, SIR
threshold 0SIR,SSFi

is set to 6 dB.

C. PARAMETER SET
The LoRaWAN system parameters and Q-learning param-
eters are listed in Tables 2 and 3. The LoRaWAN sys-
tem parameters follow the Japanese parameter configuration
AS923 [29]. In this study, the periodic packet is transmitted
immediately after generation as an unconfirmed message that
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does not require an ACK signal from the GW. By contrast,
an event packet is transmitted as a confirmed message. When
the GW receives the event packet successfully, it transmits an
ACK signal to the LoRaWAN node that transmits a confirma-
tion message. We assume that the ACK signal is received by
the LoRaWAN node ideally. This study considers a scenario
where all LPWAN nodes observe the same target. Thus, it is
reasonable to assume that the packet formats of all LPWAN
nodes are the same, which results in the length of the packet
being the same. Even if the packet length is different for
different LPWAN nodes, the proposed scheme works as it
does not assume any synchronization between the LPWAN
nodes.

D. EVALUATION CRITERIA
In this study, we evaluate the communication quality based
on the event PDR. The average event PDR is defined as

PDR ,
Nsucc

Ntran
, (16)

where Nsucc is the number of event packets successfully
received by the GW, and Ntran is the total number of event
packets transmitted by the LoRaWAN nodes. The GW cal-
culates an estimate of the event data x̂ by averaging the
successfully received data xsensi as

x̂ ,
1

Nsucc

∑
i∈Is

xsensi , (17)

where Is is the set of LoRaWAN nodes whose event packets
have been successfully received by theGW. The squared error
xSE between the event estimate data x̂ and the event true data
x is defined as

xSE ,
(
x̂−x

)2
. (18)

The squared error xSE averaged over the total number of
simulation runs is defined as the mean squared error (MSE),
which is defined as

MSE , E[xSE], (19)

where E[a] is a function that averages a over the total number
of simulation runs. We define the event detection probability
at the GW. When the GW successfully receives one or more
packets generated by the event, the event detection is consid-
ered successful. The event detection probability is calculated
as the ratio of the number of event detections to the number
of event occurrences.

E. BENCHMARK SCHEME
We describe three schemes to demonstrate the effectiveness
of the proposed scheme in this paper. 1. The pure ALOHA
protocol, which is the most common MAC layer access pro-
tocol used in LoRaWAN. The ALOHA scheme transmits an
event packet immediately after the event packet is generated.
2. The RANDOM scheme, which determines the transmis-
sion timing offset index Di,j? randomly at each transmission

FIGURE 4. Impact of number of epochs Z on average PDR performance.

of an event packet. 3. All resource allocation by Q-learning
(ARAQ) scheme, which selects both the frequency channel
and the transmission timing offset index using Q-learning.
The frequency channel and transmission timing can be arbi-
trarily selected by the LPWAN node. Thus, the ARAQ
scheme selects the frequency channel fi,z ∈ K in addition
to the time slot offset through Q-learning at epoch z. Thus,
in ARAQ scheme, the set of Q-learning action is defined as
A′, which contains combinations of frequency channel and
transmission timing offset change action.

F. NUMERICAL RESULTS
1) IMPACT OF EPOCHS
Fig. 4 shows the impact of learning epochs Z on the average
PDR performance. Fig. 4 shows that the performance of
the proposed method significantly improves at 500 epochs,
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which equals 5000 min in the environment considered in
this study. Note that because the proposed scheme learns
based on the experience of transmitting event packets, the
required learning period depends on the frequency of event
occurrence. The results show that the average PDR per-
formance of the proposed scheme converges at approxi-
mately 2000 epochs. When multiple frequency channels are
available, the proposed scheme performs better than the
ARAQ scheme. The number of elements in the Q-table is
(J + 1) × n(A) for the proposed scheme, where n(X ) is the
number of elements in the set X . On the other hand, it is
(J + 1) × n(A) × n(K) in the ARAQ scheme because of
the action set A′. Thus, the ARAQ scheme is likely to be
insufficient for exploration compared to the proposed scheme
owing to the largeQ-table size. If the LPWANnodes are given
sufficient learning time, we presume that the ARAQ scheme
may outperform the proposed scheme because the ARAQ
scheme considers the time and frequency channels. However,
Fig. 4 shows that increasing the Z = 2000 to Z = 10000
only slightly improves the performance of theARAQ scheme;
thus, it is difficult for the ARAQ scheme to outperform
the proposed scheme in real time. Therefore, our proposed
scheme can achieve a good average PDR performance even
when the frequency channels are randomly allocated. Here-
after, the performance of all the schemes with Q-learning was
obtained after the number of epochs Z = 2000.

2) AVERAGE PDR PERFORMANCE OF EACH SCHEME
Fig. 5 shows the impact of the number of channels K on the
average PDR performance. In Fig. 5(a), the proposed scheme
provides a better average PDR performance compared with
the ALOHA scheme irrespective of the number of frequency
channels K . When the number of available frequency chan-
nels is small, the improvement in the average PDR perfor-
mance by the proposed scheme is high. The average PDR
performance of the proposed scheme improves by 60% com-
pared to that of the ALOHA scheme when the number of
available frequency channels isK = 2. The proposed scheme
depicts a better average PDR performance compared to the
case where the allocated frequency channel is not fixed and
is changed for each packet transmission. This is because,
after allocating a frequency channel, the proposed scheme
can learn an appropriate transmission timing offset indexDi,j?
on the allocated channel by fixing the frequency channel to
be used. The proposed scheme improves the average PDR
performance irrespective of the number of frequency chan-
nels K to the scheme without calculating the event packet
transmission probability ps,i. The smaller the number of avail-
able frequency channels, the higher is the contribution of
the event transmission probability ps,i to the average PDR
performance. This is because the proposed scheme reduces
the packet collision probability by reducing the number of
transmitting LoRaWAN nodes with an event transmission
probability ps,i based on the ACK signal. In addition, the
proposed scheme can significantly improve the average PDR
performance compared to the RANDOM scheme. Although

FIGURE 5. Impact of number of channels K on average PDR performance.

the proposed scheme requires a learning period, it can reduce
the probability of packet collision because it can allocate an
appropriate transmission timing offset index. Fig. 5 (b) shows
that the proposed scheme is more effective than the other
schemes for all channel numbers in the case of a large num-
ber of LoRaWAN nodes with a high network load. When
the number of LoRaWAN nodes is I = 1000, the pro-
posed scheme can improve by 61% compared to the ALOHA
scheme when K = 4.
The cumulative distribution function (CDF) of the average

PDR performance is shown in Fig. 6. Fig. 6 shows that the
proposed scheme has a better CDF of average PDR than
the other schemes and is independent of the number of
LoRaWAN nodes I and number of frequency channels K .
Moreover, the proposed scheme exhibits no variation in the
average PDR performance when the number of frequency
channels is large.
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FIGURE 6. CDF of average PDR.

FIGURE 7. Effect of the number of locations where events occur.

Fig. 7 shows the impact of the number of candidate event
occurrence spots on the average PDR. The average PDR per-
formance of the proposed scheme degrades as the number of
candidate event occurrence points increases. This is because
the number of events detected by the LoRaWAN node within
the learning period decreases, and the amount of Q-table
exploration decreases; hence, it is not possible to allocate an
appropriate transmission timing offset index.

3) EVENT DETECTION CAPABILITY
Fig. 8 shows the MSE performance of an event true value
estimation. The proposed scheme provides goodMSE perfor-
mance independent of the number of channels K compared

FIGURE 8. MSE performance.

to the ALOHA scheme. In particular, when the number of
frequency channels K is small, the proposed scheme has a
better MSE performance compared with the ALOHA scheme
and can reduce the MSE by 81% when K = 1. This is
because the proposed scheme dramatically reduces packet
collision and increases the number of event packets that can
be successfully demodulated at the GW by using the event
packet transmission probability ps,i and adaptive resource
allocation using Q-learning. Conversely, the scheme without
an event packet transmission probability ps,i exhibits the best
MSE performance when K = 1, 2 and 4. This is because
the probability of the number of event packets successfully
demodulated by theGW is high as the number of transmission
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FIGURE 9. Event detection probability at the GW.

LoRaWAN nodes is not reduced by the event packet trans-
mission probability ps,i. In contrast, when K = 8 and 16, the
impact of probability-based transmission control on the MSE
performance is small because the network capacity is large
and a high event packet transmission probability is likely to
be allocated.

Fig. 9 shows the event detection probability at the GW.
When the number of channels is small, the GW may not be
able to detect the event occurrence due to severe packet col-
lision with the ALOHA protocol. Conversely, the proposed
scheme can detect an event at the GW with a probability 1,
which is independent of the number of frequency channels.

V. CONCLUSION
In this paper, an autonomous decentralized traffic control
method for wireless sensor nodes using Q-learning is pro-
posed. The proposed scheme is a powerful autonomous
decentralized resource allocation algorithm that aims to avoid
packet collisions without the need for any additional control
signals. In the proposed scheme, the packet transmission
is controlled probabilistically based on the success rate of
packet transmission, and the transmission offset is adaptively
allocated by reinforcement learning.

We focused on the event-triggered traffic, which has a huge
network load, and the proposed scheme was evaluated using
computer simulations. The numerical results show that the
proposed scheme can improve the average PDR performance
by approximately 60% compared with the ALOHA scheme.
Furthermore, the proposed scheme can detect events with a
probability 1 at the GW with a reduced MSE. These results
indicate that the proposed scheme can significantly contribute
to the improvement of communication quality in WSNs.
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