Wireless Powered-MEC における オフロード確率と電力伝送時間割当の共同設計に関する検討

小林 拓弥† 安達 宏一†

† 電気通信大学 先端ワイヤレス・コミュニケーション研究センター 〒182-8585 東京都調布市調布ケ丘 1-5-1 E-mail: †{t.kobayashi,adachi}@awcc.uec.ac.jp

あらまし モノのインターネット (IoT: Internet-of-Things) の高度化のために, 計算能力の低いセンサ端末の補助な らびにバッテリ管理の手法が重要な検討事項となっている. これらを解決する手法として, 無線端末 (WD: Wireless Device) の計算処理が必要となるタスクを代替計算処理するモバイルエッジコンピューティング (MEC: Mobile Edge Computing) と, アクセスポイント (AP: Access Point) から WD に対して無線高周波 (RF: Radio Frequency) 信号を 送りバッテリの充電を行う無線電力伝送 (WPT: Wireless Power Transfer) を組み合わせた Wireless Powered-MEC (WP-MEC) システムが期待されている. 筆者らは, 自律分散型確率的制御によって計算タスクの処理方法を選択する 確率的バイナリーオフロード (PBO: Probabilistic Binary Offloading) 方式を提案した. 本稿では, AP と WD が独立 した環境における, バッテリ蓄積量に依存したオフロード確率の決定法およびバッテリ蓄積量推定を用いた WPT 時 間割当手法を提案する. 計算機シミュレーションにより, 提案手法のバッテリ蓄積量の推定精度およびシステム内 WD のバッテリの高寿命化が可能であることを示す.

キーワード センサネットワーク, IoT, MEC, WPT, 確率的制御

Joint Design of Offloading Probability and Power Transfer Duration for Wireless Powered-MEC

Takuya KOBAYASHI[†] and Koichi ADACHI[†]

† Advanced Wireless & Communication Research Center, The University of Electro-Communications, 1–5–1 Chofugaoka, Chofu, Tokyo, 182–8585 Japan E-mail: †{t.kobayashi,adachi}@awcc.uec.ac.jp

Abstract For the advancement of the Internet-of-Things (IoT), it is crucial to assist the computing power of sensor devices and manage their battery storage. Mobile edge computing (MEC) computes heavy tasks of wireless devices (WDs) alternatively. Wireless power transfer (WPT) transmits radio frequency (RF) signal to WDs from an access point (AP) to charge their batteries. Recently, wireless powered-mobile edge computing (WP-MEC) system combining WPT and MEC has been expected to advance the IoT. We proposed the probabilistic binary offloading (PBO) strategy that selects proceeding methods based on the offloading probability. This paper proposes a method to determine the offloading probability according to the battery storage and the determining WPT duration method depending on the battery storage estimation in the environment where the AP and WDs are independent. Computer simulation results show that the accuracy of the battery storage estimation and the battery life of the WDs can be extended.

Key words Sensor Network, IoT, MEC, WPT, Probabilistic Control

1. はじめに

近年, 無線センサネットワークを実現する通信規格の標準化 に伴い, モノのインターネット (IoT: Internet-of-Things) が発 展している [1]. IoT ネットワークでは小型のセンサを多数配置 するような環境が想定されている.小型の無線センサ等の IoT 機器はコストを削減するために携帯端末等に比べて計算能力の 低いものが使用され,端末内の計算回路での計算処理は処理遅 延が増大してしまう問題がある.この問題を解決する技術とし て,モバイルエッジコンピューティング (MEC: Mobile Edge Computing) が挙げられる [2]. MEC はアクセスポイント (AP: Access Point) に高性能なサーバを配備することで,無線端末 (WD: Wireless Device) で生起した高負荷な計算処理が必要 となるタスクをサーバ上で代替処理を行う技術である.従来の

Copyright ©2022 by IEICE

クラウドコンピューティング[3] では WD とクラウドサーバ間 の物理的距離が遠い問題点があったが, MEC は WD と AP 間 のやり取りが無線リンクのみで完結するため, 伝搬遅延を抑え 低遅延の対話型応答を可能にしている.また, 多数の IoT 機器 を配置する IoT ネットワークでは, 有線充電や小型のバッテリ を用いる場合に設置や交換のコストが必要となってしまう.こ の問題を解決する技術として, 無線電力伝送 (WPT: Wireless Power Transfer) が挙げられる [4]. WPT は AP から WD へ無 線高周波 (RF: Radio Frequency) 信号を送り, WD が受信し た RF 信号を直流電流に変換することでバッテリを充電する技 術である.得られたエネルギーで WD の通信回路や計算回路を 動作させることで, 有線充電やバッテリ交換なしで IoT 機器を 稼働することが可能になる.これら2つの技術を組み合わせた Wireless Powered-MEC (WP-MEC) システムによって, 計算 能力と充電管理の問題を解決することが期待されている [5].

現在, 国内外で WPT の標準化に向けた取り組みが活発化し ており,使用周波数帯や送信電力,使用環境などの具体化が進 んでいる [6]. 特に他システムとの干渉を避けるため, WPT 送 信電力の制約は厳しいものとなっている. WPT 受信機には送 信機に対応した RF 信号を直流電流に変換する変換器が必要で ある.変換器で充電を開始するためには最小必要受信電力を上 回る必要がある [7]. しかし,送信電力が小さい場合,1本の送信 アンテナを用いて行う無指向性の WPT では非常に狭い範囲で のみ充電が実行される. そこで, 既存の WPT 商品では受信可 能な範囲を広げるために送信アンテナ数を増やして送信ビーム フォーミングを利用している [8]. WP-MEC に関する多くの既 存研究では、AP における集中制御型のリソース割当手法が検 討されている [9] [10]. これらの集中制御型システムでは制御情 報のやり取りによって処理遅延やエネルギーに関するオーバー ヘッドが発生してしまう問題がある.また,WPTの送信時間や 送信ビームフォーミングの設計に関して検討されておらず,最 大電力で全時間充電を行っているシステムが多くを占めている. そのため、WPT の充電効率や過充電を考慮し、システムを半永 久的に稼働する環境を実現するための MEC と連携した WPT システムを考案する必要がある.

筆者らは以前,自律分散型の確率的制御によってバイナリー モードを選択する確率的バイナリーオフロード (PBO: Probabilistic Binary Offloading) 方式を提案した [11]. この手法は 各 WD が自律分散的にオフロード確率を設定して計算タスク の処理を行うことで,パケット衝突を避けつつ,処理時間やエ ネルギー消費量を抑えることを目標としている. 文献 [12] で は,各 WD のバッテリ蓄積量とパケット配信率 (PDR: Packet Delivery Rate) を参照して処理の優先度を決定する手法を提案 し, PDR が高い状態で処理時間,エネルギー消費量を抑えられ ていることを計算機シミュレーションにより示した.

本稿では,各WDのバッテリ蓄積量に依存した自律分散型オ フロード確率の決定法とAPでのオフロード受信回数に基づい たバッテリ蓄積量の推定法を提案する.さらに,その推定値に 基づいたWPTの送信ビームフォーミング設計および送信時間 の決定法を提案する.計算機シミュレーションにより,提案手 法のバッテリ蓄積量の推定精度およびバッテリの推定を行わな い手法と比較してシステム内の全WDのバッテリを高寿命化 可能であることを示す.

本稿の構成は、以下の通りである.第2節で本稿で使用する システムモデルの説明と評価を行うパラメータの定義をし、第3 節で提案方式であるオフロード確率式、バッテリ蓄積量の推定 法および WPT の設計を説明する.第4節で計算機シミュレー ションの結果について説明し、第5節で本論文のまとめを行う.

2. システムモデル

MEC サーバと WPT 送信機能を具備した 1 台の AP を中心 として, *K* 台の WD (集合 *K*) がランダムに固定配置された環 境を想定する.

2.1 タスク生起モデル

各 WD の計算タスクは, ポアソン過程 [14] に従ってランダム な時間に生起するものとする. WD $k \in \mathcal{K}$ の i 番目 $(i \ge 0)$ の タスクが生起する時間 $t_{k,i}$ [sec] は次式で表される.

$$t_{k,i} = \begin{cases} -\frac{\log X}{\lambda}, & \text{(for } i = 0) \\ t_{k,i-1} - \frac{\log X}{\lambda}, & \text{(otherwise)} \end{cases}$$
(1)

ここで、 λ はポアソン過程の到着率 [/sec]、Xは (0,1)の一様 分布に従って生起される乱数である. ポアソン過程の到着率 λ は 1 秒あたりに生起する平均のタスク数を表し、以降はタスク 生起率と表記する.

2.2 チャネルモデル

オフロード時の上りリンクと下りリンク及び WPT で使用す るチャネルは自由空間伝搬損失に依存して減衰するものと仮定 する. WD *k* のチャネル電力利得 *g*^{*k*} は次式で与えられる [13].

$$g_k^{\mathsf{t}} = \left[\lambda^{\mathsf{t}}/4\pi(d_k+1)\right]^2 \tag{2}$$

ここで、 λ^{t} は搬送波の波長 [m], d_{k} は AP と WD 間の距離 [m] を表す. $t = \{ \text{offl, wpt} \}$ とし、それぞれオフロード搬送波、WPT 搬送波に関するパラメータとする.

2.3 バイナリーオフロード

各タスクをローカル計算する場合をモード 0, オフロード する場合をモード 1 とし, WD k の i 番目タスクのモードを $m_{k,i} \in \{0,1\}$ と定義する.

2.3.1 ローカル計算 $(m_{k,i} = 0)$

モード 0 が選択された時, 各 WD は内部の計算回路を用い て処理をする, ローカル計算を行う. WD k の i 番目タスクの ローカル計算時間は $\tau_{k,i}^{\text{loc}} = A_k L_{k,i} / f_k$ [sec] は次式で与えられ る. ここで, f_k は CPU 周波数 [Hz]([CPU cycle/sec]), A_k は 1bit の処理に必要な CPU サイクル数 [CPU cycle/bit], $L_{k,i}$ は オフロードタスクサイズ [bit] を表す. 以降, A_k をタスクタイ プと表記する. ローカル計算の消費電力は CPU 実効キャパシ タンス係数 ζ_k を用いると, $\zeta_k f_k^3$ [W] で表されるため, ローカ ル計算に必要なエネルギーは $E_{k,i}^{\text{loc}} = \zeta_k f_k^3 \tau_{k,i}^{\text{loc}} = \zeta_k f_k^2 A_k L_{k,i}$ [J] で求められる [19].

2.3.2 タスクオフロード $(m_{k,i} = 1)$

モード 1 が選択された時, 各 WD は pure ALOHA 方式 [16] に基づき AP へのタスクオフロードを行う. 全 WD はオフロー ド時に同一のチャネルを使用するものとし, 複数の WD が同時 にタスク送信をした場合, パケット衝突が発生し, 必ず受信失敗 するものとする. また, AP が WD に計算結果を返送している ときにオフロードを行った場合, AP はタスクを受信できない ものとする. AP から WD への計算結果の返送は理想的に成功 するものとする.

WD はオフロード送信電力を理想的に制御可能であると仮定 し,変調方式によって与えられる最大容量を超えないように電 力制御を行う.シャノンの通信路容量定理[17]より,送信電力 P^{offi} [W] は次式で与えられる.

$$P_{k}^{\text{offl}} = \begin{cases} \frac{\left(2^{C^{\max}-1}\right)\sigma^{2}}{g_{k}^{\text{offl}}} & \text{(if } C_{k} \ge C^{\max})\\ P_{\text{WD}}^{\max} & \text{(otherwise)} \end{cases}$$
(3)

ここで、 σ^2 は雑音電力 [W]、 C^{max} は最大容量 [bit/sec/Hz]、 $P_{\text{WD}}^{\text{max}}$ は WD の最大送信電力 [W] を表す. WD $k \in \mathcal{K}$ から AP への i 番目タスクの送信時間 $\tau_{k,i}^{\text{off}}$ [sec] は次式で与えられる.

$$\tau_{k,i}^{\text{offf}} = L_{k,i}/B \log_2\left(1 + \frac{g_k^{\text{offf}} P_k^{\text{offf}}}{\sigma^2}\right) \tag{4}$$

ここで, *B* は帯域幅 [Hz] を表す. オフロードに必要なエネル ギーは $E_{k,i}^{\text{offf}} = \tau_{k,i}^{\text{offf}} P_k^{\text{offf}}$ [J] で求められる.

また, WD k からオフロードされた i 番目計算タスクの MEC での計算時間は $\tau_{k,i}^{M} = A_k L_{k,i} / f^{M}$ [sec] で与えられる.ここで, f^{M} は MEC の CPU 周波数 [Hz]([CPU cycle/sec]) を表す.オ フロードされたタスクの計算結果の返送時間 $\tau_{k,i}^{re}$ [sec] は次式 で与えられる.

$$\tau_{k,i}^{\rm re} = H_{k,i} / B \log_2 \left(1 + \frac{g_k^{\rm off} P^{\rm M}}{\sigma^2} \right) \tag{5}$$

ここで, $H_{k,i}$ は計算結果のタスクサイズ [bit], P^{M} は AP の計 算結果送信電力 [W] を表す. MEC の送信電力は WD の送信電 力と同様に最大容量に従って電力制御を行うものとする.

2.3.3 オフロード失敗時のモード切替

MEC システムでは WD がオフロードに失敗した場合, AP からのタスク返送の有無により ACK (ACKnowledgement) 信 号なしでオフロードの成功・失敗を判定できる. AP からのタ スクの返送を受信しなかった場合, WD は再送処理を行わず, オフロードを中止してローカル計算に切り替える処理を行う, モード切替方式を用いる. この方式によって,繰り返しの再送 処理による通信環境の悪化を防ぎつつ,全てのタスクを処理す ることが可能となる.

2.4 WPT 送信ビームフォーミング

WPT には M 素子半波長ダイポールアンテナの等間隔リ ニアアレー (ULA: Uniform Linear Array)を用いた MISO (Multiple Input Single Output) チャネルを考える. ULA は 2 次元空間の x 軸上に y 軸対称として全ての WD と同じ高さに 配置するものとする. この時の m 番目アンテナから WD k の 受信アンテナまでのチャネル $h_{k,m}$ は次式で表される [15].

$$h_{k,m} = w_m \sqrt{g_k^{\mathsf{t}}} \exp\left(-\frac{j2\pi d_k}{\lambda^{\mathsf{w}pt}}\right) \exp\left[-j2\pi \left(m - \frac{M-1}{2}\right) \Delta_{\mathsf{t}} \Omega_k\right]$$
(6)

ここで, w_m は送信アンテナ m の重み, Δ_t は波長で正規化さ れたアンテナ間隔, $\Omega_k \triangleq \cos \phi_k$ は放射角 ϕ_k [rad] の方向余弦 を表す. $\phi_{t,d}$ を送信ビームフォーミングの最大放射方向とした 場合, 送信アンテナ m の重み w_m は次式で与えられる.

$$w_m = \exp\left[j2\pi\left(m - \frac{M-1}{2}\right)\Delta_{\rm t}\Omega_{\rm t,d}\right] \tag{7}$$

ここで, $\Omega_{t,d} \triangleq \cos \phi_{t,d}$ は最大放射方向の方向余弦を表す. 半 波長ダイポールアンテナのアンテナ利得を 1.64, 総送信電力 を P_t^{wpt} とすると, 受信信号電力 $P_{r,k}^{wpt}$ は次式のように求めら れる.

$$P_{\mathrm{r},k}^{\mathrm{wpt}} = \frac{1.64^2}{M} \left| \sum_{m=0}^{M-1} \operatorname{Re} \left\{ w_m h_{k,m} \right\} \right|^2 P_{\mathrm{t}}^{\mathrm{wpt}}$$
(8)

受信機が充電を開始するためには受信電力が最小必要受信電 力 P_0 [W] を上回らなければ受信できず、充電ができない. この とき、受信機に "Powercast P2110B Powerharvester" [7] を利 用した場合、非線形充電電力 $\Theta(P_{\mathbf{r},k}^{\text{wpt}})$ は次式のように与えられ る [18].

$$\Theta(P_{\mathbf{r},k}^{\mathrm{wpt}}) = \left[\frac{P_{\max}}{\exp(-\tau P_0 + \nu)} \left(\frac{1 + \exp(-\tau P_0 + \nu)}{1 + \exp(-\tau P_{\mathbf{r},k}^{\mathrm{wpt}} + \nu)} - 1\right)\right]^+$$
(9)

ここで, P_{\max} は充電可能な最大充電可能電力 [W], τ , ν は関数 の急峻さを抑えるパラメータ, $[x]^+ = \max(x, 0)$ を示す. WD k の WPT で得られるエネルギー量は $E_k^{wpt} = \tau_n^{wpt} \Theta(P_{r,k}^{wpt})$ [J] で表される. ここで, τ_n^{wpt} は WPT 送信時間 [sec] を表す.

2.5 確率的バイナリーオフロード

筆者らは, 確率的制御を用いてタスク処理方法を選択する 確率的バイナリーオフロード (PBO: Probabilistic Binary Offloading) 方式を提案した [11]. この手法では WD $k \in \mathcal{K}$ がオ フロード確率 $p_k \in [0,1]$ を自律分散的に計算する. 各 WD は タスク生起の度にオフロードとローカル計算のどちらのモード で処理するかを自身のオフロード確率に基づいて決定する. 例 えば, $p_k = 1.0$ の時はオフロードを行うモード 1, $p_k = 0.0$ の 時ローカル計算を行うモード 0 を確実に選択し, $p_k = 0.5$ の時 は 2 つのモードを 1/2 の確率で選択し, 処理を行う.

PBO 方式を用いることで WD の状態に応じて送信数を制御 し,自律分散制御でありながらパケット衝突回数を減らすこと ができる.さらに,閾値に基づきオフロードの有無を決定する 手法と異なり,全く AP とやり取りを行わない WD が少なくな り,WD の逐次的な状況を反映させることができるようになる.

3. 提案手法

3.1 オフロード確率の決定

PBO 方式に用いる新たな自律分散的なオフロード確率式を 提案する.WDのバッテリ蓄積量に依存した自律分散型オフ ロード確率式を用いれば,APでWDとの制御情報のやり取り なしにバッテリの状況を推定することができる.LPWAN (Low Power Wide Area Network)のような広範囲のセンサネット ワークと比較して,WPTを実装するようなネットワークは狭い 範囲が想定されるため,通常はオフロードに必要なエネルギー 消費量はローカル計算に必要なエネルギー消費量を下回ると考 えられる.しかし,生起した計算タスクを全てオフロードした場 合,パケット衝突が頻繁に発生することでPDRが低下してし まう.そこで,バッテリ蓄積量が低くなればなるほどエネルギー 効率の高いオフロードを選択するように,計算タスク*i*の処理 方法を決定するオフロード確率式を次式のように設定する.

$$p_{k,i} = \left[1 - \frac{\varepsilon_{k,i-1}}{S \cdot E_{\text{worst}}^{\text{loc}}} \right]^{\top}$$
(10)

ここで, $\varepsilon_{k,i-1}$ はタスク i-1 の処理完了後のバッテリ蓄積量 [J], S は比較ローカル計算回数, $E_{\text{worst}}^{\text{loc}}$ はタスクサイズ最大時 のローカル計算のエネルギー消費量 [J] を表す. S はシステム 開始時に自由に設定可能で AP-WD 間で共有されるものとし, 以降は $S \cdot E_{\text{worst}}^{\text{loc}}$ を基準値と呼ぶ.

3.2 バッテリ蓄積量の推定

AP は WD のタスク生起率 λ を把握し, 各 WD からオフロードされた回数と時間を保持できるものと仮定する. そのため, AP 側ではこれらの値を用いて各 WD のオフロード確率を推定 することができる. 全時間ではなく一定区間のオフロード確率 を参照するために,時間をスロット長 T [sec] のスロットに区 切り,各スロットの開始時刻で各 WD のオフロード確率の推定 およびバッテリ蓄積量の推定を行う. スロット l ($l \ge 1$) 開始時 刻の WD k のオフロード確率の推定値 p_k^{est} は次式のように求 められる.

$$p_k^{\text{est}} = \frac{A_{r,k,l-1}}{\lambda T} \tag{11}$$

ここで, $A_{r,k,l-1}$ はスロット l-1 の間に WD k から受信した オフロード数を表す. スロット l=0 開始時刻では推定および WPT は行わないものとする.

オフロード確率式と推定オフロード確率から, スロット *l* 開 始時刻の WD *k* のバッテリ蓄積量を AP は次式のように推定 する.

$$\varepsilon_k^{\text{est}} = S \cdot E_{\text{worst}}^{\text{loc}} \left(1 - \frac{A_{\text{r},k,l-1}}{\lambda T} \right)$$
(12)

ただし, もし $\varepsilon_{k,i-1} > S \cdot E_{\text{worst}}^{\text{loc}}$ の場合, オフロード確率が 1 に制限されるため, 基準値を超えるバッテリ蓄積量の推定は不可能である.

3.3 WPT の放射方向決定と WPT 時間割当

バッテリ蓄積量の推定値に基づいて WPT 送信ビームフォー ミングの放射方向の決定および送信時間の割当を行う. AP-WD 間距離 d_k [m] と放射角 ϕ_k [rad] は AP で理想的に把握してい ると仮定する. 手順は以下の通りである.

(1) スロット開始時に推定した WD のバッテリ蓄積量 ε_{st}^{est} のうち, WPT 開始バッテリ閾値 ε_{th} を下回る WD が存在する場合, その中で最も推定バッテリ蓄積量の低い WD を選択する. 存在しない場合は WPT は実行せず待機状態に移行する.

(2) 選択した WD の配置されている方向を最大放射方向 $\phi_{t,d}$ と決定する.

(3) 選択した WD のバッテリ蓄積量が基準値 S・E^{loc}_{worst} まで充電されるように,送受信利得やチャネルから WPT 時間を 割り当てる.

(4) WPT を実行し, 選択した端末以外も含む充電を行った全 WD の予測充電量をスロット開始時に推定されたバッテ リ蓄積量に加算し, 更新する.

(5) WPT 完了後, 更新されたバッテリ蓄積量の推定値を 用いて(1)~(4)の処理を繰り返す.

この方法により, バッテリ蓄積量が減少した WD に適応的に WPT を行うことで, システム全体のバッテリの長寿命化を実現 する. さらに, WPT 開始バッテリ閾値を設けることで, WPT を必要な時間のみに実行することで, 待機時間を増やして外部 への干渉や AP の消費電力を減らすことができる. スロットと バッテリ蓄積量の推定タイミングを示した概略図は図1のよう

になっている.

4. 計算機シミュレーション

4.1 評価指標

本稿では,提案するバッテリ蓄積量推定法の精度を評価する ために,次式で定義される二乗平均平方根誤差(RMSE: Root Mean Squared Error)を用いる.

$$\varepsilon_{\text{error}} = \sqrt{\frac{1}{K} \sum_{k=1}^{K} (\varepsilon_k^{\text{est}} - \varepsilon_{k,i})^2}$$
(13)

ここで, $\varepsilon_k^{\text{est}}$ は推定バッテリ蓄積量, $\varepsilon_{k,i}$ はタスク i 処理後の実際のバッテリ蓄積量 を表す.ただし, $\varepsilon_{k,i}$ が基準値よりも高い場合は推定できないため,基準値として計算する.

推定の誤差は確率によるものだけでなく,パケット衝突によ る受信失敗も影響する. WD k のオフロードの PDR は次式の ように求められる.

$$PDR_{k} = \sum_{l} A_{r,k,l} / \sum_{l} A_{t,k,l}$$
(14)

ここで, *A*_{t,k,l} はスロット *l* のオフロード送信数を表す. 評価 する WD のバッテリ蓄積量はオフロード送信, ローカル計算, WPT のみに依存するものとし, 待機中のバッテリ消費は考慮 しない.

4.2 比較手法

提案手法を以下の手法と比較する.

(1) バッテリ蓄積量推定を行わず, ビームの最大放射方向 を一定の角度に設定して, 全てのビームに等時間割り当てて全 時間 WPT を実行する場合

(2) AP が常に WD のバッテリ蓄積量の情報を理想的に把握し,提案手法を用いた場合

ここで, (1)の手法では, *M*本のビームの最大放射方向 $\phi_{t,d,m}$ [rad] を次式のように設定する [15].

$$\phi_{t,d,m} = \begin{cases} 0 \ (m=0) \\ \frac{m+1}{M+2}\pi \ (1 \le m \le M-1) \end{cases}$$
(15)

また, (1) の手法の WPT 時間は 1 周期をスロット時間 T [sec] とする.

4.3 シミュレーション諸元

シミュレーション諸元を表 1 に示す [9] [10]. ここで、WD $k \in \mathcal{K}$ の位置は距離 $d_k \sim \mathcal{U}(0, 15)$ [m], 角度 $\phi_k \sim \mathcal{U}(0, 2\pi)$ [rad] によって決定され、固定配置されているものとする. また、WD のオフロード送信パケットの最大変調方式は QPSK(Quadrature Phase shift Keying) とするため、最大チャ ネル容量は $C^{\max} = 2$ [bit/sec/Hz] となる.

衣工 シミュレーション 明九	
パラメータ	値
最大通信距離 d ^{max}	15 [m]
	50
タスクタイプ A _k	10^3 [CPU cycle/bit]
	[10, 100] [kbit]
計算結果のタスクサイズ <i>H_k</i>	$[L_k/100, L_k/10]$ [bit]
CPU キャパシタンス係数 ζ_k	10^{-28}
	0.1 [/sec]
WD の CPU 周波数 f _k	100 [MHz]
MEC の CPU 周波数 f^M	1 [GHz]
· · · · · · · · · · · · · · · · · · ·	$-174 \; [\mathrm{dBm/Hz}]$
AP の最大オフロード送信電力 P ^{max}	100 [mW]
WD の最大オフロード送信電力 P ^{max}	20 [mW]
WPT 搬送波周波数 f_c^{wpt}	915 [MHz]
	2.4 [GHz]
帯域幅 B	$0.5 [\mathrm{MHz}]$
AP の WPT 送信電力 P ^{wpt}	3 [W EIRP]
最大充電可能電力 Pmax	$4.927 \times 10^{-3} \; [W]$
最小必要受信電力 P0	$-12 \; [dBm]$
非線形充電効率のパラメータ τ	274
非線形充電効率のパラメータ ν	0.29
送受信アンテナ利得の積 G	1.64^{2}
WPT 送信アンテナ数 M	$\{1, 4, 8, 16\}$
WPT 受信アンテナ数 N	1
波長で正規化された送信アンテナ間隔 Δ_{t}	0.5
最大バッテリ容量 ε_{\max}	$10^{-1} [J]$
	100

シノー シノ主体 二

提案手法における初期状態のバッテリ蓄積量を $\varepsilon_{k,0} = S \cdot E_{\text{worst}}^{\text{loc}}$ とし、システム開始時はオフロード確率が 0 の状態から処理が開始するものとする. 最悪のローカル計算エネル ギー消費量 $E_{\text{worst}}^{\text{loc}}$ は生起タスクサイズ L_k と計算結果のタス クサイズ H_k がどちらも最大の場合の消費量とする. WPT 開始バッテリ閾値を $\varepsilon_{\text{th}} = \alpha \varepsilon_{k,0} = 0.7 \varepsilon_{k,0}$ と設定する.

4.4 シミュレーション結果

4.4.1 バッテリ蓄積量の推定精度

バッテリ蓄積量の推定精度を確認するために, 推定間隔を示 すスロット長を $T = \{100, 300, 500\}$ [sec] としたときの RMSE を計算し, 比較する. ここでは WPT 送信アンテナ数をM = 16とした. 図 2 にシミュレーション時間に対するバッテリ蓄積量 の基準値で正規化した RMSE のグラフを示す. T = 100 [sec] の場合はバッテリ基準値の約 19.7%, T = 300 [sec] の場合は約 11.7%, T = 100 [sec] の場合は約 12.8% の推定誤差があること が分かる. T = 300 [sec] で最も RMSE が小さくなっているの は, 推定の頻度とオフロード確率推定の分母となる参照数にト レードオフがあるためだと考えられる. スロット長 T が短いほ どバッテリ蓄積量の減少の様子を追従できるようになる一方で, 参照するタスクの生起回数が減少してしまうため, 確率のブレ や PDR の影響を強く受けるようになる. したがって, スロット 長 T はタスク生起率や PDR に応じて適切に設定する必要が ある.

4.4.2 時間対 PDR の比較

オフロード確率の推定に寄与する PDR を計算する. ここで

は WPT 送信アンテナ数は M = 16, スロット長は T = 300[sec] とする. 図 3 に提案手法とオフロード確率を $p_k = 1.0$ で 固定した場合の時間に対する PDR のグラフを示す. シミュレー ション結果より, 提案手法の PDR は約 94% を達成し, 設計な しに全てオフロードする場合に比べて約 36% 改善できている ことが分かる. したがって, 提案手法は自律分散型システムで ありながら, PDR を著しく低下させることなくシステムを実現 できていると考えられる.

4.4.3 バッテリ蓄積量の推移の比較

時間に応じてバッテリ蓄積量がどのように推移していくかを 確認する. ここで,スロット長は T = 300 [sec] とする. 図 4 に WPT 送信アンテナ数をそれぞれ $M = \{1,4,8,16\}$ とした ときの AP-WD 間距離ごとの時間対バッテリ蓄積量のスナッ プショットのグラフを示す. $M = \{1,4,8,16\}$ としたときの シミュレーション結果より,アンテナ数が少ない時は遠距離の WD の充電ができず,アンテナ数が多い場合はバッテリが尽き ずに維持できていることがわかる. 一方で,アンテナ数が多い時 はビーム幅が狭くなり受信電力が大きくなるため,送信時間は 短くなるが同時に充電できる WD 数は少なくなる. そのため, グラフの上下する回数が表すビームの切り替え回数が多くなっ ている. 本検討ではビーム切り替えによるオーバーヘッドは考 慮していないが,実システムでは損失が大きくなる問題がある.

さらに、図 5 に所定の方向に等時間 WPT を行う比較手法 (1)を使用したときの、M = 16での時間対バッテリ蓄積量 のグラフを示す.既存手法では一定周期で充電されるため、 $d_k = \{1,5,10\}$ [m]では線形的に充電量が増えていることが分 かる.一方で $d_k = 15$ [m]では、最大放射方向からずれている WD の充電量が少なくなり、バッテリ蓄積量が 0 に近い状態で キープされてしまっていることが分かる.提案手法は最大放射 方向を所望の WD に向けるため、WD の角度による平等性を保 ち、バッテリを一定に保てている.また、今回のパラメータでは 充電の目標値となる基準値が $S \cdot E_{\text{worst}}^{\text{loc}} = 0.01$ [J]であるのに 対し、バッテリ蓄積量が基準値を超過している WD が存在する. これは、近くの他の WD に最大放射方向を向けている時に同時 充電することによって超過して充電できていると考えられる.

4.4.4 WPT 待機時間の比較

WPT 開始バッテリ閾値に基づき WPT を実行せずに待機し ている時間を計算する.図6に提案手法と理想的にバッテリ蓄 積量を把握している比較手法(2)を使用した時の WPT 待機 時間のシミュレーション時間に対する割合を示す.シミュレー ション結果より,提案手法は約48%の時間 WPT を行わずに待 機できていることが分かる.また,提案手法は理想的な場合よ りも更に待機時間割合を約4.5% 延長することができているこ

図 5: 等時間 WPT の時間対バ 図 6: WPT 待機時間割合の比 ッテリ蓄積量の比較 (*M* = 16) 較

とが分かる. これは, PDR の影響によってオフロード確率が低 く推定され, AP がバッテリ蓄積量に余裕があると判断するこ とによる差であると考えられる. 本来 WPT を実行するべきと ころで実行されていないため, 充電が不十分なタイミングは存 在するものの, WPT 開始バッテリ閾値を低く設定しない場合, WD のバッテリ切れ等の問題は発生しないと考えられる.

5. ま と め

本稿では,確率的バイナリーオフロードを用いた WP-MEC システムにおいて,バッテリ蓄積量に依存するオフロード確率 式と,バッテリ蓄積量推定を用いた WPT 時間割当を提案した. 提案手法により,制御情報のやり取りなしで,MEC と WPT の 処理をどちらもバッテリ蓄積量に応じた逐次的な処理に変化さ せることを可能にした.計算機シミュレーションでは,AP での MEC の情報を用いたバッテリ推定の精度とオフロード確率に よる PDR を確認し,システムの高寿命化が可能であることを確 認するために WD のバッテリ推移を確認した.シミュレーショ ンにより,PDR を高い状態に保ちつつ,システム全体の WD の バッテリ蓄積量を維持し,WPT 待機時間を増加できることが 分かった.これらのことより,提案手法は自律分散型 WP-MEC システムでありながら,WPT の外部への干渉を抑えつつ WD のバッテリ蓄積量が尽きないように維持できることを示した.

謝辞 This work was supported by the European Commission in the framework of the H2020-EUJ-02-2018 project 5GEnhance (Grant agreement no. 815056), by "Strategic Information and Communications R&D Promotion Programme (SCOPE)" of Ministry of Internal Affairs and Communications (MIC) of Japan (Grant no. JPJ000595).

文

南

- A. A. Fuqaha, et al., "Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications," *IEEE Commun. Surveys Tuts.*, vol. 17, no. 4, pp. 2347–2376, 4th Quart., 2015.
- [2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A Survey on Mobile Edge Computing: The Communication Perspective," *IEEE Commun. Surveys Tuts*, vol. 19, no. 4, pp. 2322-2358, Aug. 2017.
- [3] Q. Zhang, L. Cheng, and R. Boutaba, "Cloud Computing: State-of-the-Art and Research Challenges," J. Internet Services Appl., vol. 1, no. 1, pp. 7–18, May 2010.
- [4] Y. Zeng, B. Clerckx, and R. Zhang, "Communications and signals design for wireless power transmission," *IEEE Trans. Commun.*, vol. 65, no. 5, pp. 2264-2290, May 2017.
- [5] W. Zhang, et. al., "Energy-Optimal Mobile Cloud Computing Under Stochastic Wireless Channel," *IEEE Trans. Wireless Commun.*, vol. 12, no. 9, pp. 4569-4581, Sep. 2013.
- [6] N. Shinohara, "History and Innovation of Wireless Power Transfer via Microwaves," *IEEE Journal of Microwaves*, vol. 1, no. 1, pp. 218-228, Jan. 2021.
- [7] Powercast P2110b Module Datasheet, https://www.
- powercastco.com/documentation/p2110b-module-datasheet/[8] Powercast TX91503 User Manual, https://www.
- powercastco.com/documentation/tx91503 usermanual/
- [9] F. Wang, J. Xu, X. Wang, and S. Cui, "Joint Offloading and Computing Optimization in Wireless Powered Mobile-Edge Computing Systems," *IEEE Trans. Wireless Commun.*, vol. 17, no. 3, pp. 1784-1797, Mar. 2018.
- [10] S. Bi and Y. J. Zhang, "Computation Rate Maximization for Wireless Powered Mobile-Edge Computing With Binary Computation Offloading," *IEEE Trans. Wireless Commun.*, vol. 17, no. 6, pp. 4177-4190, Jun. 2018.
- [11] T. Kobayashi and K. Adachi, "Probabilistic Binary Offloading for Wireless Powered Mobile Edge Computing System," in Proc. APSIPA ASC 2020, Dec. 2020.
- [12] 小林 拓弥, 安達 宏一, "Wireless Powered-MEC における自 律分散的なオフロード確率決定法の検討," 信学技報, vol.121, no.103, RCS2021-110, pp.57-62, 2021 年 8 月.
- [13] H. Kawabata, K. Ishibashi, S. Vuppala, and G. T. F. de Abreu, "Robust Relay Selection for Large-Scale Energy-Harvesting IoT Networks," *IEEE IoT-J*, vol. 4, no. 2, Apr. 2017.
- [14] A. F. Molisch, Wireless Communications Second Edition, United States of America: Wiley-IEEE Press, 2011.
- [15] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005
- [16] B. Sklar, and F. J. Harris, *Digital Communications: Fundamentals and Applications*, Prentice-hall Englewood Cliffs, NJ, 1988.
- [17] C. E. Shannon, "A Mathematical Theory of Communication," *The Bell System Technical Journal*, vol. 27, pp. 379-423, Jul., 1948.
- [18] S. Wang, M. Xia, K. Huang, and Y. Wu, "Wirelessly Powered Two-Way Communication With Nonlinear Energy Harvesting Model: Rate Regions Under Fixed and Mobile Relay," *IEEE Trans. Wireless Commun.*, vol. 16, no. 12, Dec. 2017.
- [19] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, "Mobile-Edge Computing: Partial Computation Offloading Using Dynamic Voltage Scaling," *IEEE Trans. Commun.*, vol. 64, no. 10, pp. 4268–4282, Oct. 2016.