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== From 4G to 5G

@ 5G Mobile Communication will be changed
to accept the diversity of ;

v Different access protocols with wide range of spectrum
from 700 MHz to more than 6 GHz (—millimeter wave)

v' Heterogeneous deployment with different cell sizes,
v’ Carrier aggregation (CA) and dual access from UEs,

v' Cooperated multiple transmission (CoMP), massive MIMO
and distributed antenna systems (DSA).

In order to achieve more efficient and flexible use of radio
resources, separation of C-plane and U-plane has been studied.
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Requirements for 5G Hardware

@ High bandwidth of 10 Gbps or more

@ Utilizing widely-spread frequency bands from current
UHF to low SHF, high SHF and millimeter waves

@ Low-power/cost small base station and Dual Access to
both Macro- and small-cells with different frequency bands

@ High Accuracy RF signals are required to increase
spectral efficiency

5G hardware is required to be more flexible, accurate,
linear and low-cost.
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Issues for Transmitter

@ Keeping linearity and power efficiency in a wider unit RF
bandwidth of 100MHz or more.

@ Keeping linearity and power efficiency under concurrent
multiband operation

Nonlinear Compensation Techniques should be developed
that can work in a wider bandwidth and multi-band
environments.

We proposes advanced Digital Predistortion (DPD) technigues
called SENF and SFFB
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Issues for Recelver

@ Receiver front-end faces a variety of incoming signals
with power of wide dynamic range.
Desired signals are not always stronger than others.

@ Under concurrent multiband operation, near-far problem
Increases chance of inter-band modulation called "cross-
modulation distortion".

Receiver Nonlinearity Compensation technigue and
reconfigurable RF BPF as pre-selector mitigate the issues.

We proposes a Post Compensation technique and
Reconfigurable BPF for concurrent dual-band receiver.
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@ Existing DPDs have been designed to feedback full bandwidth of
nonlinear output signal, requiring 3 to 5 times wideband ADC.
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With SENF (Spectral Extrapolation of Narrowband
S 114, Feedback) technique, feedback bandwidth can be
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@ Vore than 100 MHz Linearization is possible with current FPGAs
with 250 Msps ADC by SENF method.

RF: 1.75 GHz
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160MHz bandwidth DPD
by Xilinx Kintex7 FPGA
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by measurement set up

Linearization of signal with 500 MHz and beyond bandwidth
will be achieved soon by DPD.
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Linearization of 900 MHz and beyond RF bandwidth is
achieved by SENF DPD.
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@ Existing Dual-Band DPDs have two feedback path with two sets

of Down Converter and ADC.
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High-speed ADCs are expensive!
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@ Spectrum Folding Feedback (SFFB) DPD multiplexes two RF

X1

spectra into common IF [3].
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spectra into common IF [3].
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With SFFB (Spectral Folding Feedback) technigue, multiband signals

can be folded into one IF bandwidth.
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Scenario 2; 20 MHz LTE (1.75 GHz) + 4 x 20 MHz LTE CA (2.75 GHz)
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=~ 3. Cross-Modulation due to Multi-Band Access

@ Near-far problem increases chance of inter-band modulation
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Post-Compensation of Recelver Nonlinearity
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Blind & Adaptive Nonlinear Compensation method is necessary [4].
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== How to Determine Compensator Coefficients?

@ Proposed algorithm determines the compensator coefficients so as to
minimize outband spectra power for each band.

/ Minimization \

1 1
[ \ [ \

il i

0 s Frequency Shift
Desired
Signal Band

This works successfully because nonlinearity generates both
iInband and outband components and they are correlated.

The key is separation filter that eliminates the in-band signal
and maximizes SNR of outband distortion detection.
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4. Reconfigurable RF BPF

@ Reconfigurable BPF can adapt the receiver flexibly to the change
of access channels and prevent unexpected cross-modulation
distortions in multi-band/multi-access operation.
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Example of nonlinear output spectrum under concurrent dual-band operation.
Some of them locate near the operating band.
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== SHF Dual-band Reconfigurable BPF

B Low SHF (< 6 GHz) reconfigurable BPF and High SHF wideband
BPF are integrated for concurrent dual-band access.

High SHF wideband BPF section

Resonatorl Resonator?2

: : \
. . ! 7
c Reconfig. | | 1SC L Reconfig. || oG : i L
!
! —_

Low SHF Reconfigurable BPF section

DIP: Diplexer IC: Input Coupling circuit
ISC; Inter-Stage Coupling circuit  OC: Output Coupling circuit
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== Conclusions

B 5G hardware is required to be more flexible, accurate,
linear and low-cost.

B For Txs, advanced DPD techniques called SENF and
SFFB are proposed.

- SENF saves feedback bandwidth, which enables wider
compensation bandwidth.

- SFFB enables simple feedback for concurrent dual-band
operation.

B For concurrent dual-band Rxs, Post Compensation
technique and Reconfigurable BPF are proposed.

The results will contribute to improve
practical performance of the 5G system.

A
@Q 'The University of Electro-Communications (g AWCC 24




Related Works

1) Y. Ma, Y. Yamao, Y. Akaiwa, K. Ishibashi, “Wideband digital predistortion using spectral
extrapolation of band-limited feedback signal,” IEEE Trans. Circuit and Systems-I, vol. 61,
no. 7, pp. 2088-2097, July 2014.

2) Y. Ma and Y. Yamao, “Experimental results of digital predistorter for very wideband
mobile communication system,” Proc. IEEE VTC2015-Spring, 6PB-2, Glasgow, UK, May
2015.

3) Y. Ma and Y. Yamao, “Spectra-folding feedback architecture for concurrent dual-band
power amplifier predistortion,” IEEE Trans. Microw. Theory & Tech., Vol. 63, No. 10, pp.
3164-3174, Oct. 2015.

4) Y. Ma, Y. Yamao, K. Ishibashi and Y. Akaiwa, "Adaptive compensation of inter-band
modulation distortion for tunable concurrent dual-band receivers," IEEE Trans. Microw.
Theory & Tech., vol.61, no.12, pp.4209-4219, Dec. 2013.

5) R. Kobayashi, T. Kato, K. Azuma and Y. Yamao, “Design and Fabrication of Two-Stage
Three-Bit Reconfigurable Bandpass Filter Using Brunch Line-Type Variable Resonator,”
IEICE Trans. Electronics, Vol. E98-C, No. 7, pp. 636-643, July 2015.

A
];ng 'The University of Electro-Communications (g AWCC 25



Acknowledgement

A part of this work is supported by the Ministry of Internal Affairs and
Communications (MIC) of Japan under the program “R&D for the realization
of 5G mobile communication system".

Thank you for listening!

/A e Yamao

LABORATORY

‘@g 'The University of Electro-Communications 26



