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From 4G to 5G

2

5G Mobile Communication will be changed 
to accept the diversity of ;

 Different access protocols with wide range of spectrum
from 700 MHz to more than 6 GHz (~millimeter wave)

 Heterogeneous deployment with different cell sizes,

 Carrier aggregation (CA) and dual access from UEs,

 Cooperated multiple transmission (CoMP), massive MIMO
and distributed antenna systems (DSA).

In order to achieve more efficient and flexible use of radio
resources, separation of C-plane and U-plane has been studied. 



Requirements for 5G Hardware
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High bandwidth of 10 Gbps or more

Utilizing widely-spread frequency bands from current 
UHF to low SHF, high SHF and millimeter waves  

Low-power/cost small base station and Dual Access to 
both Macro- and small-cells with different frequency bands 

High Accuracy RF signals are required to increase 
spectral efficiency  

5G hardware is required to be more flexible, accurate,
linear and low-cost. 



Issues for Transmitter

Nonlinear Compensation Techniques should be developed 
that can work in a wider bandwidth and multi-band 
environments.
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Keeping linearity and power efficiency in a wider unit RF 
bandwidth of 100MHz or more.

Keeping linearity and power efficiency under concurrent 
multiband operation

We proposes advanced Digital Predistortion (DPD) techniques
called SENF and SFFB



Issues for Receiver

Receiver Nonlinearity Compensation technique and
reconfigurable RF BPF as pre-selector mitigate the issues.

5

Receiver front-end faces a variety of incoming signals 
with power of wide dynamic range.
Desired signals are not always stronger than others.

Under concurrent multiband operation, near-far problem
increases chance of inter-band modulation called "cross-
modulation distortion". 

We proposes a Post Compensation technique and 
Reconfigurable BPF for concurrent dual-band receiver.
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1. Wideband DPD Design Method
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Existing DPDs have been designed to feedback full bandwidth of 
nonlinear output signal, requiring 3 to 5 times wideband ADC.

Band-limited  
feedback signal

With SENF (Spectral Extrapolation of Narrowband  
Feedback) technique, feedback bandwidth can be 
same as the signal bandwidth (or even less) [1].  
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SENF DPD Equivalent Baseband Diagram
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SENF DPD by FPGA

More than 100 MHz Linearization is possible with current FPGAs
with 250 Msps ADC by SENF method.

with SENF
DPD

Without 
DPD

RF-DAC
2.5 Gsps

QDEM+
2 ch ADC
250 Msps

RF: 1.75 GHz
In           Out

160MHz bandwidth DPD
by Xilinx Kintex7 FPGA 

8 x 20MHz LTE CA signal (160MHz) 
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SENF DPD by Experiment (1)

More than 300 MHz Linearization is confirmed in Experiment [2]. 

320MHz feedback bandwidth DPD
by measurement set up

16 x 20MHz LTE CA signal (320MHz) 

Linearization of signal with 500 MHz and beyond bandwidth 
will be achieved soon by DPD.

320MHz
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SENF DPD by Experiment (2)

Proposed DPD can compensate non-continuous CA signal. 

4 x 20MHz LTE CA signal (240MHz) 

Linearization of 900 MHz and beyond RF bandwidth is 
achieved by SENF DPD.

6 x 20MHz LTE CA signal (280MHz) 

10



2. Concurrent Dual-Band DPD Design 

Existing Dual-Band DPDs have two feedback path with two sets 
of Down Converter and ADC.
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Spectrum Folding 
Down Converter

SFFB Dual-Band DPD

Spectrum Folding Feedback (SFFB) DPD multiplexes two RF 
spectra into common IF [3]. 
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SFFB Down 
Converter

SFFB Dual-Band DPD
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Spectrum Folding Feedback (SFFB) DPD multiplexes two RF 
spectra into common IF [3]. 



SFFB Multi-Band Extension
With SFFB (Spectral Folding Feedback) technique, multiband signals 
can be folded into one IF bandwidth.  

2
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SFFB Dual-Band DPD by Experiment
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SFFB Dual-Band DPD by Experiment
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3. Cross-Modulation due to Multi-Band Access  
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Post-Compensation of Receiver Nonlinearity
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How to Determine Compensator Coefficients?  
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Minimization

Desired
Signal Band 

0 Frequency Shift

Proposed algorithm determines the compensator coefficients so as to 
minimize outband spectra power for each band. 

This works successfully because nonlinearity generates both 
inband and outband components and they are correlated.

The key is separation filter that eliminates the in-band signal
and maximizes SNR of outband distortion detection. 



Experimental Results
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4. Reconfigurable RF BPF

21

Reconfigurable BPF can adapt the receiver flexibly to the change 
of access channels and prevent unexpected cross-modulation 
distortions in multi-band/multi-access operation. 

Example of nonlinear output spectrum under concurrent dual-band operation.
Some of them locate near the operating band.
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SHF Dual-band Reconfigurable BPF 
 Low SHF (< 6 GHz) reconfigurable BPF and High SHF wideband 

BPF are integrated for concurrent dual-band access.  
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2-stage 3-bit Low-SHF Reconfigurable BPF 
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Conclusions

 5G hardware is required to be more flexible, accurate, 
linear and low-cost. 

 For Txs, advanced DPD techniques called SENF and 
SFFB are proposed.

- SENF saves feedback bandwidth, which enables wider 
compensation bandwidth. 

- SFFB enables simple feedback for concurrent dual-band 
operation.

 For concurrent dual-band Rxs, Post Compensation 
technique and Reconfigurable BPF are proposed.
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The results will contribute to improve 
practical performance of the 5G system.
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Thank you for listening!
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